

CONNECTOR TEMPERATURE RISE AND DERATING

Goetz Schattmann Field Application Engineer

WURTH ELEKTRONIK MORE THAN YOU EXPECT

Current design for connectors

- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

Basic connector use

ENVIRONMENTAL

COMPLIANCE: LEAD FREE AND ROHS

ELECTRICAL	cULus
WORKING VOLTAGE:	300 VAC
WITHSTANDING VOLTAGE:	1.6 KV
CONTACT RESISTANCE:	20 mOhm max

Electricity and temperature rise

How working current is designed in WE

Testmethod

AT < 30K at the hottest point

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

Temperature increase and connectors

Consequences of high temperature:

Naturally increase contact resistance

Increase corrosion speed and consequently increase contact resistance > Corrosion speed ~ doubles each 10°C

Degradate solder joint

Accelerate plastic aging

Metal relaxation

Temperature increase and connectors

Consequences of high temperature:

Electronic devices lifespan

Image of lifespan reduction coeficient vs temperature Arrhenius equation

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

Electricity and temperature rise

	,
Р	$= R \cdot I^2$

loule's law

- P (W): power dissipated by the resistor
- R (Ω)
- I (A)
- ΔT (K): data given usually in Kelvin
- k: constant defined by resistance material and environnement

Temperature rise is proportional to the square of the current

Theorical calculation

Example:

• Measurment:
$$I_1 = 15A$$
 gives $\Delta T_1 \approx 15K$

• At
$$I_2 = 30A \rightarrow \Delta T2 \approx \frac{30^2}{15^2} \cdot 15 \approx 60K$$

 $\frac{\Delta T_1}{\Delta T_2} \approx \frac{{I_1}^2}{{I_2}^2}$

Theorical calculation

<u>Theorical calculation: is it really true ?</u>

Temperature rise test done at 20A

ΔT calculation vs measurment

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

How ΔT is dissipated

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

What is the temperature rise with wires?

Bx1	Max	34,7 °C
	Min	23,5 °C
	Average	25,2 °C

Wire size (AWG)	Current (A)	∆Т (К)
20	5	5
18	7	6
16	10	7
14	15	10
12	20	11
10	30	16

All pictures: WE eiCan

Wire heat dissipation: the right length?

Wire heat dissipation: the right length?

-/-

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

ΔT=30K ok but only with 3 poles ?

<u>Test:</u>

Working current is tested at 3 poles Should we decrease current with more ?

¹²AWG – 20A – 10cm

This is what you expect?

TBL **AT** versus nb of poles

<u>ΔT=30K ok but only with 3 poles ?</u>

<u>Test:</u>

Working current is tested at 3 poles Should we decrease current with more ?

¹²AWG – 20A – 10cm

Expectation vs reality

TBL ΔT versus nb of poles

ΔT=30K ok but only with 3 poles ?

Test:

TBL plug 3 poles 7,62 Initial 12AWG - 20A 2 thermocouples in 2 TBL clamps + 1 for box ambient air Wire length 10cm

Test: Same with closed box with holes

WE eiCan

<u>A connector in a closed box</u>

Test:

Same with closed box with holes and external wires

WE eiCan

Same with closed box with holes and external wires

How to naturally cool down a PCB?

Test:

- PCB redcube
- 100A
- Horizontal and vertical PCB

And now with a fan?

Test:

- PCB redcube
- 100A
- Horizontal and vertical PCB With fan

And now with a fan?

44

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

Derating curve UL

How to decrease current when ambient temperature increase:

- Maximum connector temperature
- **ΔT** ≤ **30K**
- ΔT proportional to I²

ELECTRICAL

WORKING VOLTAGE: 250 VAC INSULATOR RESISTANCE: >1000 MOHM DIELECTRIC WITHSTANDING VOLTAGE: 1500 VAC/MN CONTACT RESISTANCE: 20 mOHM MAX

46 |

Derating curve VDE

How to decrease current when ambient temperature increase:

- Maximum connector temperature
 - ΔT ≤ 45K
- ΔT proportional to I²

COMPLIANCE. LEAD FREE AND RON	5
-------------------------------	---

ENVIRONMENTAL

ELECTRICAL UL		
CURRENT RATING: 16A		
WORKING VOLTAGE: 300VAC	75	
WITHSTANDING VOLTAGE: 1,6KV	3K	
CONTACT RESISTANCE: 20 mQ MAX		

47

- Current design for connectors
- Consequences of a too high temperature
- Temperature rise rule
- How heat is dissipated
- Heat in a cable
- Some tricks
- Derating curve
- Connector horror show

Connector horror show

What happens when you increase current ? MPC4: 9A - max +105°C

All pictures: WE eiCan

