

Trilogy of Magnetics

Components

Design Guide for EMI Filter Design, SMPS & RF Circuits

II Components

2 EMC Components

2.1 Various forms of ferrites

Ferrite used primarily for EMC comes in the form of beads, cores, rods, sleeves or toroids (see Figure 2.1).

Fig. 2.1: Various forms of ferrite

All other forms have the same technical functionality; they only differ in their application. Ferrite cores or rods are more sensitive to external interference fields and themselves have a larger magnetic stray field.

Coils with toroidal cores however, have a lower stray field and are also less sensitive to interference (Figure 2.2). Pot cores have the most effective shielding and also the lowest stray field. As a result of defined internal routing of the magnetic flux, these coils are largely free from external stray fields. The coil with a ferrite core is more sensitive to magnetic field interference than the air coil. It is often necessary to shield coils to spatially restrict stray fields.

Fig. 2.2: Field line orientation for a rod and toroidal coil

EMC ferrite

II Components

Fig. 2.4: HighSpeed vs. Wideband

SMD ferrites are available in a wide spectrum of sizes from 0402–1812 with current carrying capability up to 6 A as well as impedances up to 2000 Ω at 100 MHz.

SMD ferrites are also often known as chip beads or chip bead inductors or impeders. It is really an inductor with high losses for frequencies above 10 MHz.

To prevent confusion, the term SMD ferrite has shown itself to be favorable.

Chip bead

Datasheet specifications:

The impedance of the SMD ferrite is clearly described with the following parameters (Figure 2.5):

Fig. 2.5: Impedance curve for the SMD ferrite 742 792 13

Below the ferromagnetic resonant frequency, the impedance of the component is essentially determined by the inductive component. In the range between 50 MHz–100 MHz, the situation is reversed (see Figure 2.5 SMD ferrite 742 792 13); the "R" loss component dominates with increasing frequency and the inductive component tends towards zero. In this example, the inductive component is around 1.5 μ H (f = 10 MHz) and the impedance Z attains a value of 600 Ω at f = 100 MHz.

DC resistance (DCR):

The DC resistance results from the internal length and layer thickness of the multilayer meander in the SMD ferrite. This is measured at room temperature. The maximum expected DC resistance is determined from a production lot and this worse case scenario is published as in the data sheet specifications.

Values in a range between a few milliohms up to even 1 Ω (depending on the type) are obtained. Because of their very low DC resistance, SMD ferrites are significantly superior to inductors of the same construction and size and largely avoid problems of voltage drop or potential differences.

Resonant frequency

DC resistance