ANR018
GNSS I2C COMMUNICATION

VERSION 1.3
JULY 19, 2023

WÜRTH ELEKTRONIK MORE THAN YOU EXPECT
Revision history

<table>
<thead>
<tr>
<th>Manual version</th>
<th>Notes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>• Initial version</td>
<td>June 2020</td>
</tr>
<tr>
<td>1.1</td>
<td>• Figure 7 and 8 updated</td>
<td>July 2020</td>
</tr>
<tr>
<td>1.2</td>
<td>• Updated Chapter 3</td>
<td>June 2021</td>
</tr>
<tr>
<td>1.3</td>
<td>• Updated Important notes, meta data and document style</td>
<td>July 2023</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear to send</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter-IC bus</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>GNSS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>HIGH</td>
<td>Digital (logic) high level</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>IDC</td>
<td>Insulation Displacement Contact</td>
</tr>
<tr>
<td>LOW</td>
<td>Digital (logic) low level</td>
</tr>
<tr>
<td>µC</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>NMEA</td>
<td>National Marine Electronics Association</td>
</tr>
<tr>
<td>OSP</td>
<td>One Socket Protocol</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>RTS</td>
<td>Request to send</td>
</tr>
<tr>
<td>SCL</td>
<td>Serial Clock</td>
</tr>
<tr>
<td>SDA</td>
<td>Serial Data</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>
Contents

1 Introduction 4

2 I²C Digital interface 5
 2.1 General characteristics ... 5
 2.2 SDA and SCL logic levels .. 5
 2.3 Communication phase ... 5
 2.3.1 Idle state ... 5
 2.3.2 START (S) and STOP (P) condition 6
 2.3.3 Data validity ... 6
 2.3.4 Data format ... 7
 2.3.5 Acknowledge and No-Acknowledge 7
 2.3.6 Addressing the GNSS module 8
 2.3.7 GNSS communication protocol 8
 2.4 I²C timing parameters .. 8

3 Hardware Setup 9
 3.1 Hardware Setup - 1.8 V ... 9
 3.2 Evaluation Board Modification - 1.8 V 10
 3.3 Hardware Setup - Erinome-I 12
 3.4 Evaluation Board Modification - Erinome-I 13

4 Application Example 15
 4.1 Total Phase Aardvark host adapter 15
 4.2 Generic Microcontroller ... 24

5 Troubleshooting 26

6 References 27

7 Important notes 28
1 Introduction

This application note aims to support the use of the I²C interface on Elara and Erinome GNSS modules. I²C interface is available in these modules as an alternative to UART. The GNSS module functions as Multi-Master.

The first part of the document describes the basics of I²C communication. This technical background information helps to understand the rest of the document. It includes understanding the different roles and phases in the communication, addressing of the bus subscriber and data structure.

The recommended I²C communication hardware setup is described in detail in Chapter 3. The same setup can be used for Elara-I, Elara-II, and Erinome-II modules, operating with 1.8 V power supply. A slightly different setup is required for Erinome-I, operating with 3.3 V power supply.

After some simple modifications, the evaluation board can be used to test I²C communication with the GNSS module. The modifications are also explained in detail in chapter 3.

Chapter 4 presents a specific application example, where the GNSS evaluation board communicates via I²C with the Aardvark I2C/SPI host adapter from Total Phase 1. This chapter guides the user through the software and hardware configuration to successfully establish I²C communication with the GNSS module. The application note is concluded by a troubleshooting section which helps the user to debug the process.

<table>
<thead>
<tr>
<th>Module</th>
<th>Article number</th>
<th>Power supply</th>
<th>Input logic level</th>
<th>Output logic level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elara-I</td>
<td>2613011037000</td>
<td>1.8 V</td>
<td>3.3 V</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Elara-II</td>
<td>2613021137000</td>
<td>1.8 V</td>
<td>3.3 V</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Erinome-I</td>
<td>2614011037000</td>
<td>3.3 V</td>
<td>3.3 V</td>
<td>1.8 V</td>
</tr>
<tr>
<td>Erinome-II</td>
<td>2614021137000</td>
<td>1.8 V</td>
<td>3.3 V</td>
<td>1.8 V</td>
</tr>
</tbody>
</table>

Table 1: GNSS module power supply and logic levels

2 I²C Digital interface

The GNSS module supports standard I²C (Inter-IC) bus interface as an alternative to the recommended UART interface. I²C is a serial 8-bit protocol with two-wire interface, which supports communication between different ICs. For example between the µC and other peripheral devices such as a GNSS module or sensors.

2.1 General characteristics

A serial data line (SDA) and a serial clock line (SCL) are required for the communication between the devices connected via I²C bus. Both SDA and SCL lines are bidirectional. The output stages of devices connected to the bus must have an open-drain or open-collector. Hence, the SDA and SCL lines shall be connected to a positive supply voltage using pull-up resistors. In the I²C protocol, the communication is realized through master-slave principle. The master device generates the clock pulses, a start command and a stop command for the data transfer. Each connected device on the bus is addressable via a unique address. Master and slave can act as a transmitter or a receiver depending upon whether the data needs to be transmitted or received.

The GNSS module supports the role of I²C multi-master which means it will act as an I²C master and send data to a specific slave address whenever it has data available and the bus is idle. In case the GNSS module has no data to send, it will switch into the I²C slave role to be able to receive data from another master that addresses the GNSS module via the bus.

2.2 SDA and SCL logic levels

Logic level is the positive supply voltage to which SDA and SCL lines are to be pulled up (through internal or external pull-up resistors).

The GNSS modules support specified logic levels (product specific, e.g. 1.8 V) which must be either used by every device on the I²C bus or a logic level conversion must be implemented in-between the GNSS module and the other bus participants. This conversion IC must be selected in a manner that it supports the requirements of I²C set by the GNSS module, i.e. open-drain / open-collector and at least 400kHz clock speed.

2.3 Communication phase

2.3.1 Idle state

During the idle state, the bus is free and both SDA and SCL lines are in logic high '1' state. No master has requested the bus by sending START(S).
2.3.2 START (S) and STOP (P) condition

Data transfer on the bus starts with a START command, which is generated by the active master. A start condition is defined as a high-to-low transition on the SDA line while the SCL line is held high. The bus is considered busy after the start condition, so no other master may access it. Slaves are not allowed to perform any bus activity unless addressed by a read access from a master.

![Data transfer from GNSS to slave](image)

Figure 1: Data transfer from GNSS to slave

Data transfer on the bus is terminated with a STOP command, which is also generated by the active master. A low-to-high transition on the SDA line, while the SCL line being high is defined as a STOP condition. After the stop condition, the bus is again considered free and is in idle state. Figure 2 shows the I²C bus START and STOP conditions.

2.3.3 Data validity

After the START condition, one data bit is transmitted with each clock pulse. The transmitted data is only valid when the SDA line data is stable (HIGH or LOW) during the high period of the clock pulse. HIGH or LOW state of the data line can only change when the clock pulse is in low state.
2.3.4 Data format

Data transmission on the SDA line is always done in bytes, with each byte being 8-bits long. Data is transmitted with the most significant bit (MSB) first. If the slave cannot receive or transmit another complete byte of data, it can force the master into a wait state by holding SCL LOW. Data transfer continues when the slave is ready which is indicated by releasing the SCL pin.

2.3.5 Acknowledge and No-Acknowledge

Each byte transmitted on the data line must be followed by an acknowledge bit (ACK). The receiver of the data (master or slave) generates an acknowledge signal to indicate that the data byte was received successfully and the receiver is ready to receive next data byte. This behaviour is shown in figure 1.

After one byte is transmitted, the master generates an additional acknowledge clock pulse to continue the data transfer. The transmitter releases the SDA line during this clock pulse so that the receiver can pull the SDA line to low state in such a way that the SDA line remains stable low during the entire high period of the clock pulse. It is considered as an Acknowledge signal.

If the receiver does not want to receive any further byte, it will not pull down the SDA line and it remains in stable high state during the entire clock pulse. It is considered as a No-Acknowledge (NACK) signal. After that, the master can generate either a stop condition to terminate the data transfer or a repeated start condition to initiate a new data transfer.

If there is no slave reaction following the master’s message, the NACK signal will occur. This is caused by the pull-up resistor forcing a HIGH logic level on the SDA bus line. As already explained, a HIGH logic level during the clock pulse is interpreted as NACK by the master.
2.3.6 Addressing the GNSS module

The GNSS module supports 7-bit addressing. Users must make sure that each device on the \(\text{I}^2\text{C} \) bus has a unique address. The master selects the slave by sending a slave address after each START condition.

When the GNSS module takes the role of a master/transmitter it will always try to send data to a fixed 7-bit slave address 1100010b (0x62).

The 7-bit slave/receiving address of the GNSS module is 1100000b (0x60). This address is used by the GNSS module only to receive data from a master.

The R/W bit determines the data direction. A '0' (LOW logic level) indicates a write operation (transmission from master to slave) and a '1' (HIGH) indicates a read operation (data request from slave).

In the master role the GNSS module only uses "write" operation as indicated by the R/W bit in the first byte of a transfer. In the slave role it only supports "write" operations from the master that is sending data to the GNSS module.

2.3.7 GNSS communication protocol

The GNSS module uses the NMEA protocol (default) or the OSP binary protocol (optional, can be enabled temporarily by the user). This is valid for any of its host communication interfaces. Details regarding the protocols can be found in the product specific user manual. The first protocol byte is directly following the 7-bit address and 1 R/W bit.

Users need to ensure that the bus capacity is adequate for the bus data transfer load peaks and that resulting latencies are not detrimental to system performance. This means that only a limited number of participants can be part of the shared bus. Depending on the enabled messages, the GNSS module will send more or less data to the slave that is addressed by the 0x62 address.

2.4 \(\text{I}^2\text{C} \) timing parameters

The clock is fixed to 400 kHz during master operation of the module and sending data (fast mode). During slave mode (receiving data from a master) fast mode (400kHz) as well as normal mode (100kHz) are supported by the GNSS module. The bus contention/arbitration timeout is 30 ms and cannot be changed.

Old data in the GNSS module buffer is discarded when a slave is not acknowledging the reception of the messages from the GNSS module. For optimal operation, the GNSS module assumes unrestricted outflow of serial messages and no periodic inflow of serial messages into the GNSS module.

When a message is sent to the GNSS module the reaction to this message may be delayed until all pending messages in the buffer are sent by the GNSS module and acknowledged by a slave.
3 Hardware Setup

The I²C (Inter-IC) bus interface can be selected as the communication interface in the GNSS module through /CTS and /RTS pins. During power up, the module recognizes the I²C bus interface through the /CTS and /RTS pin connections as per table 2.

<table>
<thead>
<tr>
<th>Interface</th>
<th>/CTS</th>
<th>/RTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I²C</td>
<td>Open</td>
<td>External pull-down</td>
</tr>
</tbody>
</table>

Table 2: I²C Interface Setting

By default the evaluation board is implemented with UART interface. To communicate with the module through I²C bus interface, modifications on the evaluation board are required by the user. Our Erinome-I GNSS module operates with a power supply of 3.3 V. This makes the hardware setup slightly different from the other GNSS modules Elara-I, Elara-II and Erinome-II. Details follow in the next sections.

3.1 Hardware Setup - 1.8 V

Common I²C hardware setup for Elara-I, Elara-II and Erinome-II evaluation board is shown in the figure 3.

The block diagram illustrates the pull-up resistors assembly for the SDA and SCL bus lines as well as the pull-down resistor on the /RTS pin for booting up in I²C interface mode. It also shows that the I²C bus access on evaluation board jumper JP3-2 and JP3-4 can be used to connect the bus to a host.

The I²C bus outputs on jumper JP3 are 1.8 V logic levels. Therefore, a suitable level shifter is needed for further logic level translation (i.e. when the host does not support 1.8 V logic level). For a logic level translation to 3.3 V, the level shifter TXS0108 by Texas Instruments is used in the tested hardware setup. Further information of the level shifter can be found at https://www.ti.com/product/TXS0108E.
Please note that the level shifter shall use an open drain circuit and support I²C communication.

3.2 Evaluation Board Modification - 1.8 V

![Diagram showing evaluation board modification for 1.8 V](image)

Figure 4: I²C evaluation board modification-1.8 V
Figure 4 illustrates the necessary modification to be done on the evaluation board for \(\text{I}^2\text{C} \) communication.

The highlighted area in figure 4 is common for the evaluation boards of Elara-I, Elara-II and Erinome-II modules.

The following changes must be done:

- Solder 2.2k\(\Omega \) pull-up resistors on the SDA and SCL bus;

- Connecting 10 k\(\Omega \) pull-down resistor on /RTS line by switching JP6 from default position (1,2) to (3,4).

Apart from the hardware modifications listed above and from what shown in Figure 4, other jumpers shall be kept in default position, please refer to module specific evaluation board manual.

The \(\text{I}^2\text{C} \) bus (1.8 V logic level) can be accessed through the jumper JP3.

<table>
<thead>
<tr>
<th>Jumper JP3 (1.8 V logic level)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{I}^2\text{C}) SCL</td>
<td>Pin 2</td>
</tr>
<tr>
<td>(\text{I}^2\text{C}) SDA</td>
<td>Pin 4</td>
</tr>
<tr>
<td>Ground</td>
<td>Pin 12</td>
</tr>
</tbody>
</table>

Table 3: \(\text{I}^2\text{C} \) Jumper JP3 Connection-1.8 V

The 1.8 V reference supply can be accessed through JP1 Pin-3.

Figure 5: 1.8 V - GNSS evaluation board connection to 3.3 V Host
3.3 Hardware Setup - Erinome-I

In the figure 6 the I²C hardware setup for Erinome-I evaluation board is shown.

Erinome-I evaluation board

Erinome-I module operates with input logic level of 3.3 V, VCC of 3.3 V and output logic level of 1.8 V. For detailed information please refer to the product specific user manual.

Erinome-I evaluation board has an internal level shifter circuit implemented in TX data line (I²C SCL bus) for UART interface operation. This has to be adapted to I²C hardware setup. The internal level shifter used in the evaluation board is TXB0102, which uses push-pull switching circuit for UART operation. Further information of the level shifter can be found at https://www.ti.com/product/TXB0102.

The pull-up and pull-down resistor assembly needed for the I²C communication and level shifter circuit adaptation are illustrated in the block diagram.

In this setup, the I²C bus outputs on jumper JP3 use 3.3 V logic level. Therefore, an additional external level shifter is not needed for 3.3 V logic level operation.

For a logic level translation to other logic level, please note that the level shifter shall use an open drain circuit and support I²C communication.
3.4 Evaluation Board Modification - Erinome-I

Figure 7: I^2C evaluation board modification - Erinome-I

Figure 7 illustrates the necessary modification, including correct jumper settings, to be executed on the Erinome-I evaluation board for I^2C communication.

Following modifications must be done:

- Solder 2.2kΩ pull-up resistors on the SDA and SCL bus;
- Connecting 10 kΩ pull-down resistor on /RTS line by switching jumper JP4 from default position (1,2) to (3-4);
WIRELESS CONNECTIVITY & SENSORS
ANR018 - GNSS I2C Communication

- Desolder R18 (0 Ω) resistor;
- Solder R10 (0 Ω) resistor.

Apart from the hardware modifications listed above, jumpers shall be set according to Figure 7.

The I²C bus (3.3 V logic level) can be accessed through the jumper JP3.

<table>
<thead>
<tr>
<th>Jumper JP3 (3.3 V logic level)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I²C SCL</td>
<td>Pin 2</td>
</tr>
<tr>
<td>I²C SDA</td>
<td>Pin 4</td>
</tr>
<tr>
<td>Ground</td>
<td>Pin 12</td>
</tr>
</tbody>
</table>

Table 4: I²C Jumper JP3 Connection - Erinome-I

The 3.3 V reference supply can be accessed through JP1 Pin-3.

Figure 8: 3.3 V - Erinome-I evaluation board connection to 3.3 V Host

For further information about I²C communication with the Erinome-I, including an application example with Aardvark and its matching PC software, please refer to our dedicated application note ANR018 [1].
4 Application Example

4.1 Total Phase Aardvark host adapter

Aardvark is a bus to USB adapter with a matching Windows PC Software. It allows to access I²C as well as SPI bus either as master or slave. In case of I²C slave and master operation, addresses can be configured manually. This allows selecting the address required for communication with the GNSS module. For detailed information please refer to the Aardvark user manual at https://www.totalphase.com/support/articles/200468316-Aardvark-I2C-SPI-Host-Adapter-User-Manual.

![Figure 9: Aardvark bus to USB adapter](image)

In this example, Aardvark takes the role of the host and is used to communicate with the GNSS modules. Aardvark adapter has USB-B 2.0 connector for the PC connection and ribbon cable connector for the bus connection. Aardvark adapter has a standard 10-wire 1.25mm pitch ribbon cable with a standard 2.54mm pitch IDC type ribbon cable connector.

![Figure 10: Aardvark connector pinout](image)
Table 5: Aardvark pins used for I²C communication

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL</td>
<td>1</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
</tr>
<tr>
<td>SDA</td>
<td>3</td>
</tr>
</tbody>
</table>
The Control Center Serial Software is used to configure the Aardvark for I²C communication. This software tool, usable with the Aardvark hardware only, can be downloaded from Total Phase. The USB drivers for Aardvark are also available through Total Phase.

We cannot offer any support that extends this description. In case of further questions regarding the Aardvark tool, please get in direct contact with the manufacturer Total Phase.

Aardvark input logic level is 3.3 V. Therefore, corresponding logic level translation is necessary to establish communication between GNSS modules and Aardvark. For the modules with 1.8 V power supply (Elara-I, Elara-II and Erinome-II) the external level shifter as shown in the hardware setup is implemented. The evaluation board of TXS0108 level shifter is used in this application.

In case of Erinome-I evaluation board, SCL and SDA bus connection with 3.3 V logic level from the jumper JP3 can be directly connected to Aardvark.

![Aardvark Host to GNSS evaluation board - 1.8 V](image)

Figure 11: Aardvark Host to GNSS evaluation board - 1.8 V
Table 6: GNSS evaluation board to TXS0108 level shifter connection

<table>
<thead>
<tr>
<th>Connection</th>
<th>Level shifter pin</th>
<th>GNSS evaluation board</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8 V supply</td>
<td>VA</td>
<td>JP1 - pin 3</td>
</tr>
<tr>
<td>1.8 V supply (same as VA Pin)</td>
<td>OE</td>
<td>JP1 - pin 3</td>
</tr>
<tr>
<td>3.3 V supply</td>
<td>VB</td>
<td>Host</td>
</tr>
<tr>
<td>SCL 1.8 V to level shifter</td>
<td>A1</td>
<td>JP3 - pin 2</td>
</tr>
<tr>
<td>SDA 1.8 V to level shifter</td>
<td>A2</td>
<td>JP3 - pin 4</td>
</tr>
<tr>
<td>Common ground connection</td>
<td>GND</td>
<td>JP3 - pin 12</td>
</tr>
</tbody>
</table>

Table 7: TXS0108 level shifter to Aardvark connection

<table>
<thead>
<tr>
<th>Connection</th>
<th>Level shifter pin</th>
<th>Aardvark pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL 3.3 V to Aardvark</td>
<td>B1</td>
<td>1</td>
</tr>
<tr>
<td>SDA 3.3 V to Aardvark</td>
<td>B2</td>
<td>3</td>
</tr>
<tr>
<td>Common ground connection</td>
<td>GND</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 12: Aardvark to 3.3 V (Erinome-I) evaluation board

<table>
<thead>
<tr>
<th>Connection</th>
<th>GNSS evaluation board JP3 pin</th>
<th>Aardvark pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL 3.3 V to Aardvark</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ground connection</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>SDA 3.3 V to Aardvark</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 8: Aardvark to 3.3 V (Erinome-I) evaluation board
To communicate with the GNSS module through Aardvark, prepare the hardware setup according to the GNSS module used. After that, follow the steps below to establish I²C communication between the GNSS module and Aardvark.

- Connect the GNSS evaluation board to PC through a micro USB cable.
- Make sure that the module is in hibernate mode. Please refer to module evaluation board specific user manual.
- Module power supply (VCC) is stable and able to reliably supply the module’s static and peak current consumption as specified by the module manual.
- Connect the Aardvark USB cable to PC.
- Open control center serial software in PC.

![Control center serial software open window](image)

Figure 13: Control center serial software open window
• Select 'Adapter-> Connect'.
• Select 'I2C - GPIO'.
• Click 'OK'.

Figure 14: Connect I²C

• Select Slave tab.
• Select the bitrate to 400kHz from the dropdown list.
• Enter '0x62' Slave Addr.
• Click 'Set'.
Make sure ‘Adapter -> I2C Pullups’ is deactivated.

Click ‘Enable’ in the Slave tab.

Switch GNSS module into full power mode. Please refer to module evaluation board specific user manual.

After the steps are properly followed the I²C interface communication between module and Aardvark will be started. GNSS messages from the module can be viewed in the transaction log of the control center serial software in hexadecimal form. These messages in the transaction log have to be manually converted into ASCII form.

For information about the NMEA messages supported by the GNSS module, please refer to the module specific user manual.
Figure 16: I²C communication
4.2 Generic Microcontroller

The following flowchart shows the principle that needs to be implemented into the µC firmware to allow a communication with the GNSS module over the I²C interface and the protocol used in the GNSS module.

The protocol used by the GNSS module is typically different to common sensor protocols. Therewith many existing drivers or hardware abstraction layers are not matching the requirements of the GNSS protocol. It may be necessary to modify existing drivers or write new drivers.

A µC host driver for use with the GNSS module is required to support at least 400kHz clock, slave mode, 7-bit addressing with the own address 0x62 and a variable I²C transfer length.

The application in the host is also required to support concatenating and parsing NMEA messages that will be sent by the GNSS module. For information regarding NMEA messages supported and used by the GNSS module refer to the module specific user manual.
initialize I²C as slave, 7-bit addressing, own address 0x62
address found
send ACK
Start I²C Receive (variable length message):
Wait for START condition, Wait for Address match (0x62), direction W (message from master)
receive 1 byte
share byte with app for defragmentation
STOP condition received?
yes
stop i²c receive

initialize i²c RX buffer
receive 1 byte
send ACK

RX failed

nack, error or stop detected

I²C operation complete

RX from GNSS (default)
host=slave, GNSS=master

TX to GNSS host = master, GNSS = slave

initialize I²C as master 400kbit
Address was confirmed with ACK
Send I²C START condition, destination address 0x60, direction "Write"
send all bytes in buffer, received ACK for each byte

host app state: message transmitted successfully. Next state: wait for reply from GNSS module
send STOP condition, stop i²c transmit, de-init i²c master

nack, error, stop detected OR timeout

TX failed

No master will continue sending bytes

Send I²C START condition, destination address 0x60, direction "Write"
Address was confirmed with ACK

send all bytes in buffer, received ACK for each byte

Figure 17: Flowchart for host implementation
5 Troubleshooting

If the communication between host and GNSS modules cannot be established, please verify the following points.

- Check the logic level compatibility between GNSS module and host.

- Check hardware setup is properly connected according to the relevant GNSS module used.

- Check if recommended hardware modifications on the relevant GNSS evaluation board are made.
 - For Elara-I, Elara-II and Elara-II evaluation board hardware modification refer to chapter 3.2
 - For Erinome-I evaluation board hardware modification refer to chapter 3.4

- Check if the level shifter supports the required logic level translation between GNSS module and Host.

- Check whether the level shifter uses open drain circuit and is I²C compatible.

- Check whether the level shifter supports the required bitrate of 400 kbits/s.

- Check power up sequence- 'Module Power up-> Reset -> Hibernate mode -> Full power mode'. Refer to the module specific manual for further information.

- Check if pull-down on /RTS line is active during power up.

- Check if I²C operation mode 'Master or Slave' on GNSS module and Host.

- Check the bitrate on both Host and GNSS module.

- Check I²C bus signals using a logic analyser.

- Check if pull-up resistors are needed in I²C bus on the host controller.

- Check if the length of I²C bus is kept as short as possible.
6 References

7 Important notes

The Application Note and its containing information ("Information") is based on Würth Elektronik eiSos GmbH & Co. KG and its subsidiaries and affiliates ("WE eiSos") knowledge and experience of typical requirements concerning these areas. It serves as general guidance and shall not be construed as a commitment for the suitability for customer applications by WE eiSos. While WE eiSos has used reasonable efforts to ensure the accuracy of the Information, WE eiSos does not guarantee that the Information is error-free, nor makes any other representation, warranty or guarantee that the Information is completely accurate or up-to-date. The Information is subject to change without notice. To the extent permitted by law, the Information shall not be reproduced or copied without WE eiSos’ prior written permission. In any case, the Information, in full or in parts, may not be altered, falsified or distorted nor be used for any unauthorized purpose.

WE eiSos is not liable for application assistance of any kind. Customer may use WE eiSos’ assistance and product recommendations for customer’s applications and design. No oral or written Information given by WE eiSos or its distributors, agents or employees will operate to create any warranty or guarantee or vary any official documentation of the product e.g. data sheets and user manuals towards customer and customer shall not rely on any provided Information. THE INFORMATION IS PROVIDED "AS IS". CUSTOMER ACKNOWLEDGES THAT WE EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES’ INTELLECTUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR A PURPOSE OR USAGE. WE EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EITHER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH WE EISOS INFORMATION IS USED. INFORMATION PUBLISHED BY WE EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WE eiSos TO USE SUCH PRODUCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF.

The responsibility for the applicability and use of WE eiSos’ components in a particular customer design is always solely within the authority of the customer. Due to this fact it is up to the customer to evaluate and investigate, where appropriate, and decide whether the device with the specific characteristics described in the specification is valid and suitable for the respective customer application or not. The technical specifications are stated in the current data sheet and user manual of the component. Therefore the customers shall use the data sheets and user manuals and are cautioned to verify that they are current. The data sheets and user manuals can be downloaded at www.we-online.com. Customers shall strictly observe any product-specific notes, cautions and warnings. WE eiSos reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time without notice.

WE eiSos will in no case be liable for customer’s use, or the results of the use, of the components or any accompanying written materials. IT IS CUSTOMER’S RESPONSIBILITY TO VERIFY THE RESULTS OF THE USE OF THIS INFORMATION IN IT’S OWN PARTICULAR ENGINEERING AND PRODUCT ENVIRONMENT AND CUSTOMER ASSUMES THE ENTIRE RISK OF DOING SO OR FAILING TO DO SO. IN NO CASE WILL WE EISOS BE LIABLE FOR
CUSTOMER’S USE, OR THE RESULTS OF IT’S USE OF THE COMPONENTS OR ANY ACCOMPANYING WRITTEN MATERIAL IF CUSTOMER TRANSLATES, ALTERS, ARRANGES, TRANSFORMS, OR OTHERWISE MODIFIES THE INFORMATION IN ANY WAY, SHAPE OR FORM.

If customer determines that the components are valid and suitable for a particular design and wants to order the corresponding components, customer acknowledges to minimize the risk of loss and harm to individuals and bears the risk for failure leading to personal injury or death due to customers usage of the components. The components have been designed and developed for usage in general electronic equipment only. The components are not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the components is reasonably expected to cause severe personal injury or death, unless WE eiSos and customer have executed an agreement specifically governing such use. Moreover WE eiSos components are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation, transportation signal, disaster prevention, medical, public information network etc. WE eiSos must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every component which is used in electrical circuits that require high safety and reliability functions or performance. COSTUMER SHALL INDEMNIFY WE EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF THE COMPONENTS IN SUCH SAFETY-CRITICAL APPLICATIONS.
List of Figures

1. Data transfer from GNSS to slave ... 6
2. Data validity, START and STOP condition 7
3. I²C Hardware setup - 1.8 V ... 9
4. I²C evaluation board modification - 1.8 V 10
5. 1.8 V - GNSS evaluation board connection to 3.3 V Host 11
6. I²C Hardware setup - Erinome-I .. 12
7. I²C evaluation board modification - Erinome-I 13
8. 3.3 V - Erinome-I evaluation board connection to 3.3 V Host 14
9. Aardvark bus to USB adapter .. 15
10. Aardvark connector pinout ... 15
11. Aardvark Host to GNSS evaluation board - 1.8 V 17
12. Aardvark to 3.3 V (Erinome-I) evaluation board 19
13. Control center serial software open window 20
14. Connect I²C .. 21
15. I²C Bitrate set .. 22
16. I²C communication .. 23
17. Flowchart for host implementation .. 25

List of Tables

1. GNSS module power supply and logic levels 4
2. I²C Interface Setting .. 9
3. I²C Jumper JP3 Connection - 1.8 V .. 11
4. I²C Jumper JP3 Connection - Erinome-I 14
5. Aardvark pins used for I²C communication 16
6. GNSS evaluation board to TXS0108 level shifter connection 18
7. TXS0108 level shifter to Aardvark connection 18
8. Aardvark to 3.3 V (Erinome-I) evaluation board 19
Contact
Würth Elektronik eiSos GmbH & Co. KG
Division Wireless Connectivity & Sensors
Max-Eyth-Straße 1
74638 Waldenburg
Germany
Tel.: +49 651 99355-0
Fax.: +49 651 99355-69
www.we-online.com/wireless-connectivity