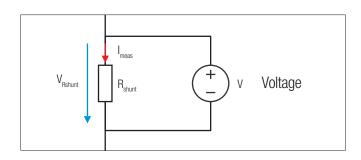
Current Sense Resistors

Product Portfolio

How does Current Sensing of the Application work?

- Using a resistor within the circuit of the application to make the current measurable (called: shunt)
- The current through such a resistor generates a proportional voltage drop according to **Ohm's Law**:


$$I_{\text{meas}} = \frac{V_{\text{Rshunt}}}{R_{\text{shunt}}}$$

- Very low resistance values are used to generate a low voltage drop up to a few hundred mV
- In case of low currents, very precise resistance values and an amplifying circuit have to be used to get stable measurements, because of the very small voltage drop

Metal Plate Resistors

Thick Film Resistors

Example Calculation for a shunt*

Given:

- $I_0 = 10 A$
- We want to measure a voltage drop of 50 mV

Searched:

- Shunt, which is required to measure 50 mV
- Power loss, which will be caused by the shunt

Formulas:

Shunt
$$R = \frac{U}{I}$$
 Power Loss $P = U \times I = I^2 \times R$

Calculation:

138

Shunt, which is required:

$$R_{Shunt} = \frac{U}{I} = \frac{50 \text{ mV}}{10 \text{ A}} = 0,005 \Omega = 5 \text{ m}\Omega$$

Power loss of the shunt:

$$P_{Loss} = I^2 \times R = 10^2 \, A \times 5 \, m\Omega = 0.5 \, W$$

Würth Elektronik eiSos® 05/20

^{*}Calculation is only an example, for application specific calculation or detailed support, please contact our technical support.