Common Mode Chokes

Common Mode Behaviour

Huge Common Mode Attenuation!

- **Current**
- **Magnetic field**

When the common mode portion of a signal tries to go through the choke, it will meet a high impedance, due to the inductance created by the magnetization of the core and the coils.

Differential Mode Behaviour

Current

Magnetic field

In opposition to the common mode behaviour, the differential mode portion of the signal will see almost no impedance in the choke, this phenomenon could be explained with the magnetic field compensation inside the core. If the core is not magnetized, then no inductance will appear in the line.

Winding styles for different applications

Bifilar winding: Shows the lowest attenuation in differential mode. These chokes are recommended for data lines, where a high isolation is not needed and some high speed signals are involved.

Sectional winding: Shows the highest attenuation in differential mode. This chokes are recommended for power lines, where a high isolation is mandatory and the power delivery is happening at low frequency.

Compare the two technologies in REDEXPERT: www.we-online.com/redexpert-winding-styles
A division of the winding space in separate chambers (see WE-FC, 2 chambers on each winding) reduces the intrawinding capacitance increasing the bandwidth of the choke. The current capabilities will be reduced due to the smaller winding space.

Comparison Core Material

- Manganese-Zinc
- Manganese-Zinc & Nickel-Zinc
- Nanocrystalline
- Nickel-Zinc

Compare the different materials for our chokes in REDEXPRESS: www.we-online.com/redexpert-compare-core-material