ANR016 RADIO MODULE MIGRATION GUIDE ALWAYS BE UP TO DATE: REPLACING A RADIO MODULE BY ITS SUCCESSOR VERSION 1.7 JULY 19, 2023 WURTH ELEKTRONIK MORE THAN YOU EXPECT # **Revision history** | Manual version | Notes | Date | |----------------|---|----------------| | 1.0 | Initial version | October 2019 | | 1.1 | Added Proteus-III | February 2020 | | 1.2 | Update Tarvos-I to Tarvos-III chapter due to Tarvos-III firmware update affecting transparent mode Update Tarvos-II to Tarvos-III chapter due to Tarvos-III firmware update affecting transparent mode Update Thebe-I to Thebe-II chapter due to Thebe-II firmware update affecting transparent mode Improvements for Proteus chapters | January 2021 | | 1.3 | • Added chapters Telesto-III to Themisto-I and Tarvos-III to Thebe-II | January 2021 | | 1.4 | • Added chapter Thadeus to Tarvos-III | July 2021 | | 1.5 | • Added chapters Tarvos/AMB8420 to Tarvos-III and References | September 2021 | | 1.6 | • Added chapters Proteus-II to Proteus-e and Proteus-III to Proteus-e | March 2022 | ### **WIRELESS CONNECTIVITY & SENSORS** # **ANR016 - Radio Module Migration Guide** | 1.7 | Updated Important notes, meta data and document style | July 2023 | |-----|---|-----------| |-----|---|-----------| # **Abbreviations** | Abbreviation | Name | Description | |---------------------|--------------------|---| | | | Radio packet sent back to the transmitter to acknowledge the reception of data. | | Blocking | | The ability to receive the wanted radio signal with close radio noise. | | LRM Long range mode | | Special radio profile for large transmission ranges. | | Payload | | The intended message in a frame / package. | | RF | Radio frequency | Describes wireless transmission. | | SRD | Short Range Device | Unlicensed frequency bands. | # **ANR016 - Radio Module Migration Guide** # **Contents** | 1 | Intro | duction | | 7 | |---|------------|------------|---|---| | 2 | Thad | eus to Ta | rvos-III | 8 | | | 2.1 | Summai | | 8 | | | 2.2 | Hardwai | I . | 9 | | | | 2.2.1 | Foot print | 9 | | | | 2.2.2 | Pinout | 0 | | | | 2.2.3 | Antenna | 1 | | | 2.3 | Host firm | nware adaption | 1 | | | | 2.3.1 | Command Mode | 1 | | | | 2.3.2 | UART interface | 1 | | | | 2.3.3 | Radio interface | 2 | | | | | Power saving modes | 2 | | | | 2.3.5 | Boot mode | 2 | | | | | Timings | 2 | | | | | Transparent mode | 2 | | | | | | | | 3 | | | 20 to Tarvos-III | _ | | | 3.1 | | y | _ | | | 3.2 | | e adaption | | | | | | Foot print | | | | | | Pinout | | | | | | Antenna | | | | 3.3 | | nware adaption | | | | | | Command Mode | | | | | | UART interface | | | | | | Radio interface | | | | | | Power saving modes | | | | | 3.3.5 | Boot mode | | | | | 3.3.6 | Timings | 6 | | | | 3.3.7 | Switch between transparent and command mode | 7 | | 4 | Toma | a Lta Tau | rvos-III | 0 | | 4 | 4.1 | s-I to Tai | γ | _ | | | 4.1
4.2 | | | | | | 4.2 | | ļ | | | | | | ! | | | | | | Pinout | | | | 4.0 | | | | | | 4.3 | | nware adaption | | | | | | Command Mode | | | | | | UART interface | | | | | | Radio interface | | | | | 4.3.3.1 | Radio compatibility settings | | | | | | Power saving modes | | | | | | Boot mode | | | | | 4.3.6 | Timings | 3 | ### **WIRELESS CONNECTIVITY & SENSORS** # **ANR016 - Radio Module Migration Guide** | | | 4.3.7 | Transparent mode |
 | |
 | |
 |
 | |
 | | |
 | . 23 | |---|-------|------------|-------------------|------|---|------|---|---------|------|---|------|---|---|-------|------| | 5 | Tarvo | s-II to T | arvos-III | | | | | | | | | | | | 24 | | | 5.1 | Summa | ary |
 | |
 | |
 |
 | |
 | | |
 | | | | 5.2 | Hardwa | are adaption |
 | |
 | |
 |
 | |
 | | |
 | . 25 | | | | 5.2.1 | Foot print |
 | |
 | |
 |
 | |
 | | |
 | . 25 | | | | 5.2.2 | Pinout |
 | |
 | |
 |
 | |
 | | |
 | . 25 | | | | 5.2.3 | Antenna |
 | |
 | |
 |
 | |
 | | |
 | . 27 | | | 5.3 | Host fir | mware adaption . |
 | |
 | |
 |
 | |
 | | | | . 27 | | | | 5.3.1 | Command Mode | | | | | | | | | | | | | | | | 5.3.2 | | | | | | | | | | | | | | | | | 5.3.3 | | | | | | | | | | | | | | | | | 5.3.3. | | | | | | | | | | | | | | | | | 5.3.4 | Power saving mode | | | | | | | | | | | | | | | | 5.3.5 | Boot mode | | | | | | | | | | | | | | | | 5.3.6 | | | | | | | | | | | | | | | | | | Timings | | | | | | | | | | | | | | | | 5.3.7 | Transparent mode |
 | • |
 | • |
• • |
 | • |
 | • | • |
 | . 29 | | 6 | Tarvo | s-III to 1 | | | | | | | | | | | | | 30 | | | 6.1 | Summa | ary |
 | |
 | |
 |
 | |
 | | |
 | . 30 | | | 6.2 | Hardwa | are adaption |
 | |
 | |
 |
 | |
 | | |
 | . 30 | | | | 6.2.1 | Foot print |
 | |
 | |
 |
 | |
 | | |
 | . 30 | | | | 6.2.2 | Pinout |
 | |
 | |
 |
 | |
 | | |
 | . 30 | | | | 6.2.3 | Power supply |
 | |
 | |
 |
 | |
 | | | | . 31 | | | 6.3 | Host fir | mware adaption . | | | | | | | | | | | | | | | | 6.3.1 | Radio interface . |
 | |
 | |
 |
 | |
 | | |
 | . 31 | | 7 | Theh | e-I to Th | ehe-II | | | | | | | | | | | | 33 | | • | 7.1 | | ary | | | | | | | | | | | | | | | 7.1 | | are adaption | | | | | | | | | | | | | | | 1.2 | 7.2.1 | Foot print | | | | | | | | | | | | | | | | 7.2.1 | | | | | | | | | | | | | | | | | 7.2.2 | | | | | | | | | | | | | | | | 7.0 | _ | Antenna | | | | | | | | | | | | _ | | | 7.3 | | • | | | | | | | | | | | | | | | | 7.3.1 | | | | | | | | | | | | | | | | | 7.3.2 | | | | | | | | | | | | | _ | | | | 7.3.3 | Power saving mode | | | | | | | | | | | | | | | | 7.3.4 | Boot mode | | | | | | | | | | | | | | | | 7.3.5 | Transparent mode |
 | • |
 | • |
 |
 | |
 | • | • |
 | . 35 | | 8 | Teles | to-III to | Themisto-I | | | | | | | | | | | | 36 | | | 8.1 | | ary |
 | |
 | | |
 | |
 | | | | . 36 | | | 8.2 | | are adaption | | | | | | | | | | | | | | | J | 8.2.1 | Foot print | | | | | | | | | | | | | | | | 8.2.2 | Pinout | | | | | | | | | | | | | | | | 8.2.3 | | | | | | | | | | | | | | | | 0.0 | | Power supply | | | | | | | | | | | | | | | 8.3 | | mware adaption . | | | | | | | | | | | | | | | | 8.3.1 | Radio interface . |
 | |
 | - |
 |
 | • |
 | | |
• | . 37 | ### **WIRELESS CONNECTIVITY & SENSORS** # **ANR016 - Radio Module Migration Guide** | 9 | Metis-
9.1 | | 39
39 | |----|---------------|---------------------------------------|-----------------| | 10 | Prote | us-I to Proteus-II | 40 | | | 10.1 | Summary | 40 | | 11 | Prote | us-II to Proteus-III | 41 | | | 11.1 | Summary | 41 | | | 11.2 | Hardware adaption | 42 | | | | 11.2.1 Foot print | 42 | | | | | 42 | | | | 11.2.3 Antenna | 44 | | | 11.3 | Host firmware adaption | 44 | | 12 | Prote | us-II to Proteus-e | 45 | | | 12.1 | Summary | 45 | | | 12.2 | | 46 | | | | · | 46 | | | | | 46 | | | | | 48 | | | 12.3 | | 48 | | 13 | Prote | us-III to Proteus-e | 50 | | | 13.1 | | 50 | | | 13.2 | | 51 | | | | · · · · · · · · · · · · · · · · · · · | 51 | | | | 13.2.2 Pinout | | | | 13.3 | Host firmware adaption | | | 14 | AMB2 | 2520 to Thalassa | 55 | | | 14.1 | Summary | | | | 14.2 | Hardware adaption | | | | | · | 55 | | | | ' | 56 | | | | | 56 | | | 14.3 | | 56 | | 15 | Refere | ences | 57 | | | | | 58 | ### 1 Introduction The radio frequency spectrum is regulated by designated regulatory authorities that define how specific spectrum bands can be used. As each frequency band has its strength, Würth Elektronik eiSos provides for each frequency band proprietary radio modules, which allow energy efficient and fast data transmission. With the evolution of radio chips, new proprietary radio modules have been developed, that are more energy efficient during data transmission and reception. Furthermore new coding and modulation techniques have been added, that allow higher transmission ranges (long range mode) and/or higher data rates. Due to this natural evolution, when redesigning a device that is already using a proprietary radio module, it is recommended to use the latest member of the corresponding radio module family. This application note describes the key factors to be considered, when replacing a proprietary Würth Elektronik eiSos radio module with its successor from the same family. Due to changes in hardware platform and firmware when replacing a radio module with its successor, the end device's radio certification becomes void. A new radio certification or declaration needs to be acquired by performing actions according to the local statutory requirements at the location of deployment. If a switch from 868 MHz to 915 MHz is desired to serve also the North American market, the application note ANR015 [1] describes the necessary steps to be performed. ### 2 Thadeus to Tarvos-III The Thadeus is a 434 MHz proprietary radio module. The Tarvos-III is a 868-MHz radio module of a later generation, that reduces the power consumption, improves the blocking capabilities and provides new modulation techniques to boost the transmission range. Figure 1: Thadeus to Tarvos-III ### 2.1 Summary In comparison to the Thadeus, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the
Thadeus can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III. Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III. Radio compatibility of both modules is not given as both operate in different frequency bands. Nevertheless, the radio features like addressing or acknowledgments remain the same. ### 2.2 Hardware adaption #### 2.2.1 Foot print Both Thadeus and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III. If a design has been made for Thadeus, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III. In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x. Figure 2: Universal footprint #### **2.2.2 Pinout** Although the Thadeus and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules: | Pin
No. | Thadeus | Tarvos-III | Comment | |------------|----------|------------|---| | 1 | ANT | ANT | Antenna pin connection | | 2 | GND | GND | Ground | | 3 | VCC | VCC | Supply voltage | | 4 | UTXD | UTXD | UART TX | | 5 | URXD | URXD | UART RX | | 6 | /RTS | /RTS | UART /RTS | | 9 | RESERVED | RESERVED | | | 10 | RESERVED | RESERVED | | | 16 | RESERVED | RESERVED | | | 17 | RESERVED | RESERVED | | | 18 | RESERVED | RESERVED | | | 19 | /RESET | /RESET | Reset pin | | 20 | /TX_IND | /TX_IND | Pin indicating when a radio packet is transmitted | | 21 | /RX_IND | /RX_IND | Pin indicating when a radio packet is received | | 22 | RESERVED | RESERVED | | | 23 | GND | GND | Ground | Table 1: Pins with same functions on both, Thadeus and Tarvos-III But pins with special functions changed: | Pin
No. | Thadeus | Tarvos-III | Comment | | | |------------|---------------------|------------|---|--|--| | 7 | /CTS | RESERVED | /CTS function no longer supported. | | | | 8 | DATA_IND | RESERVED | DATA_IND function no longer supported. | | | | 11 | DATA_REQ | RESERVED | DATA_REQ function no longer supported. | | | | 12 | RESERVED | ВООТ | The BOOT pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool. | | | | 13 | SLEEP RESERVED | | Sleep function by pin no longer supported, as the Tarvos-III enters the sleep modes via command. | | | | 14 | TRX_DISABLE WAKE-UP | | Pin function changed. The WAKE-UP pin is used to wake-up the module from sleep mode. | | | | 15 | /CONFIG | MODE_1 | The MODE_1 pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Thadeus, switching between transparent mode and command mode is not possible during runtime by using the MODE_1 pin. | | | Table 2: Pins of the Thadeus and Tarvos-III that have different functions #### 2.2.3 Antenna The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the ANT pin, the same as Thadeus. Using this variant an external antenna matched to 50 Ω can be connected at this pin. The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the ANT pin has no function and can be left open. No external antenna has to be connected. # 2.3 Host firmware adaption #### 2.3.1 Command Mode If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted. #### 2.3.2 UART interface The Thadeus uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Thadeus provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default). The command interface on the UART uses of the same command structure. The UART ### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [2, 3, 4]. #### 2.3.3 Radio interface The radio interfaces of the Tarvos-III and Thadeus are not compatible as different radio profiles and radio channels (frequencies) are used. Nevertheless, both radio modules support radio features like addressing and acknowlegdement. ### 2.3.4 Power saving modes As the pins *SLEEP* and *TRX_DISABLE* of the Thadeus are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Thadeus *TRX_DISABLE* pin. #### 2.3.5 Boot mode The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Thadeus and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update. #### 2.3.6 Timings Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased. Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent). The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement. #### 2.3.7 Transparent mode Tarvos-III firmware 3.0.0 or newer is required for transparent mode support. ### 3 Tarvos/AMB8420 to Tarvos-III The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos (formerly known as AMB8420) has been succeeded by the Tarvos-III, that reduces the power consumption and provides a cleaner frequency spectrum, improved blocking capabilities and new modulation techniques to boost the transmission range. Figure 3: Tarvos to Tarvos-III ### 3.1 Summary In comparison to the Tarvos, the Tarvos-III has a slightly different size and footprint. Both radio modules are available with internal antenna and as a variant with the radio signal on the module pad for external antenna connection. A few pin and software functions changed, such that the host firmware must be adapted to communicate with the Tarvos-III. Radio compatibility of both modules is given under certain conditions. If the host cannot be adopted it may not be possible to perform migration to a more recent product. Figure 4: Pinout # 3.2 Hardware adaption #### 3.2.1 Foot print Both Tarvos and Tarvos-III have similar but not identical dimensions. Where the Tarvos has the size of 16×27.5 mm, the Tarvos-III is 17×27 mm. In addition to that Tarvos-III has additional pins and new pad locations. #### **3.2.2 Pinout** The pinout of both modules is very similar. The main functions such as power supply, reset and UART share the same pins, but special pin functions have been updated. In detail, the *DATA_REQUEST*, *DATA_INDICATION*, *TRX_DISABLE* and *SLEEP* pins have been replaced by the *WAKE_UP*, *TX_IND* and *RX_IND* pins. This has the effect that it's not longer possible to trigger the radio transmission and sleep mode via pin. Both, the data transmission as well as the sleep mode have to be triggered by UART commands. The wake-up from sleep mode is still possible via the *WAKE_UP* pin. The switch between transparent and command mode is now done via the *MODE_1* pin, that replaces the *CONFIG* pin and defines the operation mode right after the start-up of the module. Last but not least a *BOOT* pin has been added, that allows the Tarvos-III to enter the boot mode for firmware updates via the UART. ### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** #### 3.2.3 Antenna The Tarvos and the Tarvos-III are available in two hardware variants. The first variant provides the radio signal at the ANT pin. Using this variant an external antenna matched to 50 Ω can be connected at this pin. The second variant offers an internal PCB antenna. Using this variant the ANT pin has no function and can be left open. No external antenna has to be connected. ### 3.3 Host firmware adaption #### 3.3.1 Command Mode If you are not already using command mode, we recommend to switch over to using command mode whenever your application can be adopted. #### 3.3.2 UART interface The Tarvos uses 9600 Baud 8n1 and Tarvos-III uses
115200 Baud 8n1 by default. The Tarvos provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default). The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [2, 3, 4]. #### 3.3.3 Radio interface The Tarvos-III is supporting more radio channels and radio profiles than available on Tarvos. Both radio modules support the 38.4 kbps and 100 kbps radio profile as well as radio channels 102 - 110. If one of these radio channels and radio profiles is used, the Tarvos and Tarvos-III are radio compatible provided that acknowledgements are disabled. The radio timing behavior must be adapted using the respective user settings to allow the communication between Tarvos and Tarvos-III, in case acknowledgements are enabled. Using these radio settings, a higher radio range can be achieved compared to Tarvos owing to the higher default transmission power of Tarvos-III. The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate. | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | - | 4.8 | 128 ² | 102 - 110 | | - | 10 | 128 ² | 102 - 110 | | - | 38.4 | 128 ² | 103 - 109 | | - | 76.8 | 128 ² | 104 - 108 | | - | 100 | 128 ² | 105 - 107 | Table 3: Radio profiles of the Tarvos | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 1 - 139 | | 2 | 100 | 128 | 1 - 139 | | 3 (LRM) | 10 (=0.625 kbps net) | 48 | 1 - 139 | | 4 (LRM) | 20 (=2.5 kbps net) | 64 | 1 - 139 | | 5 | 400 | 224 | 1 - 139 | Table 4: Radio profiles of the Tarvos-III #### 3.3.4 Power saving modes As the pins SLEEP and TRX DISABLE of the Tarvos are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively via pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken from any sleep mode using the WAKE-UP pin, which is at the location of the Tarvos TRX DISABLE pin. #### 3.3.5 Boot mode The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the BOOT pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update. #### 3.3.6 Timings Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased. Version 1.7, July 2023 ²The maximum payload size depends on the selected address mode. #### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent). The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement. #### 3.3.7 Switch between transparent and command mode Tarvos-III firmware 3.0.0 or newer is required for transparent mode support. The *CONFIG* pin has been replaced by the *MODE_1* pin, that defines the operation mode after module start-up by the pin level. During operation the mode can be switched by UART commands. ### 4 Tarvos-I to Tarvos-III The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos-I has been succeeded by the Tarvos-II (chapter 5), that scores with lower sleep, transmission and receptions currents, as well with a cleaner frequency spectrum. The Tarvos-II itself has been succeeded by the Tarvos-III, that further reduces the power consumption and provides new modulation techniques to boost the transmission range. Each generation also includes improvements in the blocking capabilities. Figure 5: Tarvos-I to Tarvos-III ### 4.1 Summary In comparison to the Tarvos-I, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the Tarvos-I can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III. Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III. Radio compatibility of both modules is given in most operation modes. If the host cannot be adopted it may not be possible to perform migration to a more recent product. ### 4.2 Hardware adaption #### 4.2.1 Foot print Both Tarvos-II and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III. If a design has been made for Tarvos-I, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III. In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. In order to ensure a comparable radio performance to Tarvos-I, it is recommended to use the variant with antenna pin to connect to an external antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x. Figure 6: Universal footprint #### **4.2.2 Pinout** Although the Tarvos-I and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules: | Pin
No. | Tarvos-I | Tarvos-III | Comment | |------------|----------|------------|---| | 1 | ANT | ANT | Antenna pin connection | | 2 | GND | GND | Ground | | 3 | VCC | VCC | Supply voltage | | 4 | UTXD | UTXD | UART TX | | 5 | URXD | URXD | UART RX | | 6 | /RTS | /RTS | UART /RTS | | 9 | RESERVED | RESERVED | | | 10 | RESERVED | RESERVED | | | 16 | RESERVED | RESERVED | | | 17 | RESERVED | RESERVED | | | 18 | RESERVED | RESERVED | | | 19 | /RESET | /RESET | Reset pin | | 20 | /TX_IND | /TX_IND | Pin indicating when a radio packet is transmitted | | 21 | /RX_IND | /RX_IND | Pin indicating when a radio packet is received | | 22 | RESERVED | RESERVED | | | 23 | GND | GND | Ground | Table 5: Pins with same functions on both, Tarvos-I and Tarvos-III But pins with special functions changed: | Pin
No. | Tarvos-I | Tarvos-III | Comment | |------------|---------------------|------------|--| | 7 | /CTS | RESERVED | /CTS function no longer supported. | | 8 | DATA_IND | RESERVED | DATA_IND function no longer supported. | | 11 | DATA_REQ | RESERVED | DATA_REQ function no longer supported. | | 12 | RESERVED | ВООТ | The BOOT pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool. | | 13 | SLEEP RESERVED | | Sleep function by pin no longer supported, as the Tarvos-III enters the sleep modes via command. | | 14 | TRX_DISABLE WAKE-UP | | Pin function changed. The WAKE-UP pin is used to wake-up the module from sleep mode. | | 15 | /CONFIG | MODE_1 | The MODE_1 pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Tarvos-I, switching between transparent mode and command mode is not possible during runtime by using the MODE_1 pin. | Table 6: Pins of the Tarvos-I and Tarvos-III that have different functions #### 4.2.3 Antenna The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the ANT pin, the same as Tarvos-I. Using this variant an external antenna matched to 50 Ω can be connected at this pin. The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the ANT pin has no function and can be left open. No external antenna has to be connected. # 4.3 Host firmware adaption #### 4.3.1 Command Mode If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted. #### 4.3.2 UART interface The Tarvos-I uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Tarvos-I provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default).
The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [2, 3, 4]. #### 4.3.3 Radio interface The radio interface of the Tarvos-III is compatible to that of Tarvos-I provided that the Tarvos-III is configured to use the 38.4 kbps or the 100 kbps profile with the radio settings as described in section 4.3.3.1. Using these radio settings, a higher radio range can be achieved compared to Tarvos-I owing to the higher default transmission power of Tarvos-III. The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate. Furthermore, all the radio channels, that are used by the Tarvos-I, are also supported by the Tarvos-III. | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | - | 4.8 | 128 ² | 101 - 111 | | - | 10 | 128 ² | 101 - 111 | | - | 38.4 | 128 ² | 101 - 111 | | - | 76.8 | 128 ² | 101 - 111 | | - | 100 | 128 ² | 101 - 111 | Table 7: Radio profiles of the Tarvos-I | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 1 - 139 | | 2 | 100 | 128 | 1 - 139 | | 3 (LRM) | 10 (=0.625 kbps net) | 48 | 1 - 139 | | 4 (LRM) | 20 (=2.5 kbps net) | 64 | 1 - 139 | | 5 | 400 | 224 | 1 - 139 | Table 8: Radio profiles of the Tarvos-III #### 4.3.3.1 Radio compatibility settings General: Tarvos-I firmware must be of version 2.1.0 or later. Version 1.7, July 2023 ²The maximum payload size depends on the selected address mode. ### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** **Address mode:** Tarvos-I supports only address mode 0 and 1. **Addresses:** The Tarvos-III uses broadcast addresses by default, where as the Tarvos-I uses 0 as default destination address and network ID. **Timings:** The ACK timeouts must be adjusted to ensure interoperability between Tarvos-III and Tarvos-I, when using acknowledgments. #### 4.3.4 Power saving modes As the pins *SLEEP* and *TRX_DISABLE* of the Tarvos-I are no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Tarvos-I *TRX_DISABLE* pin. #### 4.3.5 Boot mode The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos-I and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update. #### 4.3.6 Timings Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased. Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent). The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement. #### 4.3.7 Transparent mode Tarvos-III firmware 3.0.0 or newer is required for transparent mode support. ### 5 Tarvos-III to Tarvos-III The Tarvos series is a family of 868 MHz proprietary radio modules. The Tarvos-II has been succeeded by the Tarvos-III, that reduces the power consumption, improves the blocking capabilities and provides new modulation techniques to boost the transmission range. Figure 7: Tarvos-III to Tarvos-III ### 5.1 Summary In comparison to the Tarvos-II, the Tarvos-III has 4 additional pins. Since the size and the remaining footprint of the two modules are the same, the Tarvos-II can be replaced by the Tarvos-III, if no underlying non-insulated copper area touches the 4 new pins of the Tarvos-III. Besides of this, a few pin functions changed, such that the sleep mode for example has to be triggered in a different way on the Tarvos-III. Due to this, and due to new firmware functions the host firmware must be adapted to communicate with the Tarvos-III. Radio compatibility of both modules is given in most operation modes. If the host cannot be adopted it may not be possible to perform migration to a more recent product. ### 5.2 Hardware adaption #### 5.2.1 Foot print Both Tarvos-II and Tarvos-III have the same dimensions of 17×27×4 mm with the pins located at the same positions. The only change in the footprint is the presence of 4 additional pins (i1-i4) of the JTAG interface on the Tarvos-III. If a design has been made for Tarvos-II, the footprint matches the Tarvos-III, if no underlying non-insulated copper area touches the JTAG pins i1-i4 of the Tarvos-III. In addition to the radio signal to an external antenna on pin 1, the Tarvos-III offers an alternative option to use the on-board PCB antenna. In order to ensure a comparable radio performance to Tarvos-I, it is recommended to use the variant with antenna pin to connect to an external antenna. The order code for Tarvos-III with external antenna is 260901118100x. The integrated PCB antenna with reduced efficiency is available using order code 260901108100x. Figure 8: Universal footprint #### 5.2.2 Pinout Although the Tarvos-II and Tarvos-III share the same footprint, some of the pin functions differ on the new hardware platform. The main pin functions such as power supply and UART use the same footprint pin on both modules: | Pin
No. | Tarvos-II | Tarvos-III | Comment | |------------|-----------|------------|---| | 1 | ANT | ANT | Antenna pin connection | | 2 | GND | GND | Ground | | 3 | VCC | VCC | Supply voltage | | 4 | UTXD | UTXD | UART TX | | 5 | URXD | URXD | UART RX | | 6 | /RTS | /RTS | UART /RTS | | 9 | RESERVED | RESERVED | | | 10 | RESERVED | RESERVED | | | 13 | RESERVED | RESERVED | | | 16 | RESERVED | RESERVED | | | 17 | RESERVED | RESERVED | | | 18 | RESERVED | RESERVED | | | 19 | /RESET | /RESET | Reset pin | | 20 | /TX_IND | /TX_IND | Pin indicating when a radio packet is transmitted | | 21 | /RX_IND | /RX_IND | Pin indicating when a radio packet is received | | 22 | RESERVED | RESERVED | | | 23 | GND | GND | Ground | Table 9: Pins with same functions on both, Tarvos-II and Tarvos-III But pins with special functions changed: | Pin
No. | Tarvos-II | Tarvos-III | Comment | |------------|-------------|------------|---| | 7 | /CTS | RESERVED | /CTS function no longer supported. | | 8 | DATA_IND | RESERVED | DATA_IND function no longer supported. | | 11 | DATA_REQ | RESERVED | DATA_REQ function no longer supported. | | 12 | RESERVED | ВООТ | The BOOT pin is used on the Tarvos-III to set the module into boot mode, where the module's firmware can be updated using the ACC tool. | | 14 | TRX_DISABLE | WAKE-UP | Pin function changed. The WAKE-UP pin is used to wake-up the module from sleep mode. | | 15 | /CONFIG | MODE_1 | The MODE_1 pin is used on the Tarvos-III to determine the operating mode during boot. In contrast to the Tarvos-II, switching between transparent mode and command mode is not possible during runtime by using the MODE_1 pin. | Table 10: Pins of the Tarvos-II and Tarvos-III that have different functions #### 5.2.3 Antenna The Tarvos-III is available in two hardware variants. The first variant provides the radio signal at the ANT pin, the same as Tarvos-II. Using this variant an external antenna matched to 50 Ω can be connected at this pin. The second variant of the Tarvos-III offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected. # 5.3 Host firmware adaption #### 5.3.1 Command Mode If you are not already using command mode we recommend to switch over to using command mode whenever your application can be adopted. #### 5.3.2 UART interface The Tarvos-II uses 9600 Baud 8n1 and Tarvos-III uses 115200 Baud 8n1 by default. The Tarvos-II provides the command and transparent mode on the UART (transparent mode by default). The Tarvos-III provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default). The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface of the Tarvos-III must be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [2, 3, 4]. #### 5.3.3 Radio interface The radio interface of the Tarvos-III is compatible to that of Tarvos-II provided that the Tarvos-III
is configured to use the 38.4 kbps or the 100 kbps profile with the radio settings as described in section 5.3.3.1. Using these radio settings, a higher radio range can be achieved compared to Tarvos-I owing to the higher default transmission power of Tarvos-III. The new radio profiles of the Tarvos-III are incompatible to the previous Tarvos generations, but offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 5 provides a fast data transmission due to the increased data-rate. All radio channels, that can be used by the Tarvos-II, are supported by the Tarvos-III, too. | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 101 - 139 | | 1 | 2.4 | 128 | 101 - 139 | | 2 | 100 | 128 | 101 - 139 | Table 11: Radio profiles of the Tarvos-II | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 1 - 139 | | 2 | 100 | 128 | 1 - 139 | | 3 (LRM) | 10 (=0.625 kbps net) | 48 | 1 - 139 | | 4 (LRM) | 20 (=2.5 kbps net) | 64 | 1 - 139 | | 5 | 400 | 224 | 1 - 139 | Table 12: Radio profiles of the Tarvos-III #### 5.3.3.1 Radio compatibility settings **General:** Tarvos-II firmware must be of version 3.5.0 or later. Address mode: Tarvos-II supports only address mode 0, 1 and 2. **Addresses:** The Tarvos-III uses broadcast addresses by default, where as the Tarvos-II uses 0 as default destination address and network ID. **Timings:** The ACK timeouts must be adjusted to ensure interoperability between Tarvos-III and Tarvos-II, when using acknowledgments. #### 5.3.4 Power saving modes As the pin *TRX_DISABLE* of the Tarvos-II is no more available on the Tarvos-III, the low power modes are handled in a different way. The Tarvos-III does not enable the possibility to switch off the radio exclusively by a pin, but allows to enter into two different sleep modes via UART command. The Tarvos-III can be woken up again from any sleep mode using the *WAKE-UP* pin, which is at the location of the Tarvos-II *TRX_DISABLE* pin. #### 5.3.5 Boot mode The Tarvos-III needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Tarvos-II and Tarvos-III can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update. #### 5.3.6 Timings Due to change of the underlying hardware, especially the CPU and radio IC, as well as the use of an RTOS (real time operating system) in the Tarvos-III, most of the timing parameters have slightly changed. Some were decreased, but others increased. Due to the CPU change and the RTOS the UART RX of the module is now using a shift register of 32 bit instead of 8 bit, which will introduce (worst case) a latency of up to 3 additional byte durations (depending on the selected UART data rate) to each received UART message (command or transparent). The host-application needs to take this changed timings into account to be able to use the Tarvos-III as replacement. #### 5.3.7 Transparent mode Tarvos-III firmware 3.0.0 or newer is required for transparent mode support. ### 6 Tarvos-III to Thebe-II The Tarvos-III is a 868 MHz proprietary radio module with 14 dBm output power. For some applications the transmission range of it may not be suffient. Therefore the 500 mW variant of it, the so called Thebe-II radio module, provides a high transmission range caused by its increased output power. Figure 9: Tarvos-III to Thebe-II ### 6.1 Summary Only the hardware variant of the Tarvos-III with external antenna pad can be replaced by the Thebe-II without any layout modification of the underlying PCB. However the power supply used on the PCB must be suited for the peaks in current during transmission caused by Thebe-II. The radio settings (radio power, channel and profile) differ in both radio modules. Thus, if backward compatibility is required, matching radio settings must be configured by the host controller to allow radio compatible replacement of the Tarvos-III with an Thebe-II. # 6.2 Hardware adaption #### 6.2.1 Foot print The Tarvos-III and Thebe-II have the same footprint and size. Only the height increases from 3.2 to 3.8mm. #### 6.2.2 Pinout There are two hardware variants of the Tarvos-III radio module available. One with an antenna pad ANT providing the radio signal for 50 Ω matched external antenna connection, and one with integrated PCB antenna. The antenna pad of the variant with integrated PCB antenna does not have any function. The Thebe-II radio module itself has only one hardware variant, the one with the antenna pad *ANT*. Thus only the hardware variant of the Tarvos-III using an external antenna can be replaced by an Thebe-II without any redesign of the layout. In case a Tarvos-III with integrated PCB antenna has been used, the RF path on the underlying PCB must be created first to solder an Thebe-II on it. ### 6.2.3 Power supply As the Thebe-II has a higher power demand than Tarvos-III, please check how much power the power supply circuit can provide. Thebe-II needs up to 500 mA at 3.3 V when transmitting data with maximum transmission power. ### 6.3 Host firmware adaption Both, the Tarvos-III and Thebe-II provide the same functions. Both use the same command set to control the radio module. Solely, the provided radio profiles, allowed radio channels and output powers differ. #### 6.3.1 Radio interface The following points must be only considered, if backward compatibility of the radio is required. The radio profiles and allowed radio channels differ in some points. | Radio profile | Data rate (gross)
[kcps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 1 - 139 | | 2 | 100 | 128 | 2 - 138 | | 3 (LRM) | 10
(=0.625 kbps net) | 48 | 1 - 139 | | 4 (LRM) | 20
(=2.5 kbps net) | 64 | 1 - 139 | | 5 | 400 | 224 | 46 - 94, 106 | Table 13: Radio profiles of the Tarvos-III | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 129 - 132 | | 2 | 100 | 128 | 131 | | 3 (LRM) | 10
(= 0.625 kbps net) | 48 | 129 - 132 | | 4 (LRM) | 20
(= 2.5 kbps net) | 64 | 129 - 132 | | 7 | 50 | 128 | 131 | Table 14: Radio profiles of the Thebe-II Caused by the high output power, the Thebe-II provides only a few radio channels in the so called "band P". To be radio compatible after a replacement of a Tarvos-III by an Thebe-II, the user's application must use a radio profile (i.e. 0, 2, 3 or 4) and radio channel (i.e. in the range of 129 to 132, with further restrictions by the radio profile itself) that is provided by both radio modules. For example, if radio profile 0 with radio channel 129 are used, the Thebe-II and Tarvos-III are radio compatible. Besides of that, the Thebe-II allows to use 12-26 dBm output power, where the Tarvos-III allows 0-14 dBm. Both are set to their maximum by default. Due to EU laws (radio equipment directive, EN300220-2 annex B) the application must ensure to maintain the duty cycle for devices in band P (500 mW, around 869 MHz) at under 10 %. # 7 Thebe-I to Thebe-II The Thebe series is a family of 868 MHz proprietary radio modules with 500 mW output power to achieve high transmission ranges. The Thebe-I has been succeeded by the Thebe-II, that is significantly smaller in size and provides new modulation techniques to boost the transmission range. Figure 10: Thebe-I to Thebe-II ### 7.1 Summary The Thebe-I and Thebe-II have different sizes and footprints. Thus, when replacing the Thebe-I by a Thebe-II, a redesign of the hardware is needed. Due to new firmware functions the host firmware must be adapted to communicate with the Thebe-II. The radio compatibility in between both modules is not given. # 7.2 Hardware adaption #### 7.2.1 Foot print The Thebe-I and Thebe-II have different footprints. Besides the number of pins, the size has been reduced significantly. The Thebe-I has dimensions of $33.5 \times 76 \times 14.5$ mm where as the Thebe-II has a significantly smaller form factor of $17 \times 27 \times 3.8$ mm. #### 7.2.2 Pinout Although the Thebe-I and Thebe-II have different footprints, the main pin functions such as power supply, reset and UART are retained. Only the following pin functions have changed. On Thebe-II - the pins /CTS, DATA_IND, DATA_REQ, TRX_DISABLE and /CONFIG are no longer supported. - the pin BOOT has been added, that can be used to set the Thebe-II into boot mode. - the pin *WAKE-UP* has been added to wake-up the module from sleep mode. - the pin ANT has been added to attach an external 50 Ω antenna. #### 7.2.3 Antenna The Thebe-I has a SMA antenna connector integrated on the module to attach an external antenna. The Thebe-II on the other hand provides a module pin to connect any 50 Ω matched external antenna on the customer PCB. ### 7.3 Host firmware adaption #### 7.3.1 UART interface The Thebe-I uses 9600 Baud 8n1 and Thebe-II uses 115200 Baud 8n1 by default. The Thebe-I provides the command and transparent mode on the UART (transparent mode by default). The Thebe-II provides the command mode and, using firmware version 3.0.0 or higher, the transparent mode (command mode by default). The command interface on the UART uses of the same command structure. The UART command numbers itself and range of parameter values for a specific command may differ. Thus the command interface must
be updated in the host controller. The source codes of the command interface for host integration are available in the Wireless Connectivity SDK on GitHub [2, 3, 4]. #### 7.3.2 Radio interface The radio profiles of the Thebe-I and Thebe-II are not compatible. Therefore it is not possible to have a communication from a Thebe-I to a Thebe-II or vice versa. The radio profiles and channel frequencies differ. The new radio profiles of the Thebe-II offer various advantages. The radio profiles 3 and 4 allow a higher transmission range, where radio profile 2 provides a fast data transmission due to the increased data-rate. | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 4.8 | 128 | 0 - 18 | | 1 | 4.8 | 128 | 9 | | 2 | 9.6 | 128 | 9 | | 7 | 50 | 128 | 9 | Table 15: Radio profiles of the Thebe-I | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 0 | 38.4 | 128 | 129 - 132 | | 2 | 100 | 128 | 131 | | 3 (LRM) | 10
(= 0.625 kbps net) | 48 | 129 - 132 | | 4 (LRM) | 20
(= 2.5 kbps net) | 64 | 129 - 132 | | 7 | 50 | 128 | 131 | Table 16: Radio profiles of the Thebe-II #### 7.3.3 Power saving modes As the pin *TRX_DISABLE* of the Thebe-I is no more available on the Thebe-II, the low power modes are handled in a different way. The Thebe-II does not enable the possibility to switch off the radio exclusively by a pin, but offers the possibility to enter into two different sleep modes via UART command. The Thebe-II can be woken up again from any sleep mode using the *WAKE-UP* pin. #### 7.3.4 Boot mode The Thebe-II needs to be set to boot mode, if a firmware update is performed. To switch the boot mode on, the *BOOT* pin has to be handled by host controller. The firmware update uses the UART interface at the dedicated module UART pins. Both, Thebe-I and Thebe-II can be connected to the ACC PC tool to perform changes in user settings and a firmware update. Please refer to the product specific details for the firmware update. #### 7.3.5 Transparent mode Thebe-II firmware 3.0.0 or newer is required for transparent mode support. ### 8 Telesto-III to Themisto-I The Telesto-III is a 915 MHz proprietary radio module with 14 dBm output power. For some applications the transmission range of it may not be sufficient. Therefore the 25 dBm variant of it, the so called Themisto-I radio module, provides a high transmission range caused by its increased output power. Figure 11: Telesto-III to Themisto-I ## 8.1 Summary Only the hardware variant of the Telesto-III with external antenna pad can be replaced by the Themisto-I without any layout modification of the underlying PCB. However the power supply used on the PCB must be suited for the peaks in current during transmission caused by Themisto-I. The radio settings (radio power and profile) differ in both radio modules. Thus, if backward compatibility is required, matching radio settings must be configured by the host controller to allow radio compatible replacement of the Telesto-III with a Themisto-I. ## 8.2 Hardware adaption #### 8.2.1 Foot print The Telesto-III and Themisto-I have the same footprint and size. Only the height increases from 3.2 to 3.8mm. #### 8.2.2 Pinout There are two hardware variants of the Telesto-III radio module available. One with an antenna pad ANT providing the radio signal for 50 Ω matched external antenna connection, and one with integrated PCB antenna. The antenna pad of the variant with integrated PCB antenna does not have any function. The Themisto-I radio module itself has only one hardware variant, the one with the antenna pad *ANT*. Thus only the hardware variant of the Telesto-III using an external antenna can be replaced by #### **ANR016 - Radio Module Migration Guide** a Themisto-I without any redesign of the layout. In case a Telesto-III with integrated PCB antenna has been used, the RF path on the underlying PCB must be created first to solder a Themisto-I on it. #### 8.2.3 Power supply As the Themisto-I has a higher power demand than Telesto-III, please check how much power the power supply circuit can provide. Themisto-I needs up to 400 mA at 3.3 V when transmitting data with maximum transmission power. ## 8.3 Host firmware adaption Both, the Telesto-III and Themisto-I provide the same functions. Both use the same command set to control the radio module. Solely, the provided radio profiles and output powers differ. #### 8.3.1 Radio interface The following points must be only considered, if backward compatibility of the radio is required. Telesto-III does not provide radio profile 8 and 9, so far. Thus if radio profile 6 is used, both, Telesto-III and Themisto-I are radio compatible. The profiles 8 and 9 are long range profiles that provide much higher range at the cost of throughput. | Radio profile | Data rate (gross)
[kcps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 6 | 400 | 224 | 201-251 | Table 17: Radio profiles of the Telesto-III | Radio profile | Data rate (gross)
[kbps] | Max payload
size [Byte] | Radio channels | |---------------|-----------------------------|----------------------------|----------------| | 6 | 400 | 224 | 201-251 | | 8 (LRM) | 480
(= 240 kbps net) | 224 | 201-251 | | 9 (LRM) | 480
(= 30 kbps net) | 224 | 201-251 | Table 18: Radio profiles of the Themisto-I Besides of that, the Themisto-I allows to use 12-25 dBm output power, where the Telesto-III allows 0-14 dBm. Both are set to their maximum by default. ### 9 Metis-I to Metis-II The Metis series is a family of 868 MHz wireless M-BUS radio modules. The Metis-I has been succeeded by the Metis-II, that scores with lower sleep, transmission and receptions currents, as well with a cleaner frequency spectrum and better blocking capabilities. Figure 12: Metis-I to Metis-II ## 9.1 Summary As the footprint, pinout and firmware functions coincide, the Metis-I can be replaced by Metis-II without any modification to the hardware design or the host controller firmware. ### 10 Proteus-I to Proteus-II The Proteus series is a family of Bluetooth[®] LE radio modules. The Proteus-I has been succeeded by the Proteus-II, that scores with additional Bluetooth[®] 5.0 related features. Figure 13: Proteus-I to Proteus-II ## 10.1 Summary As the footprints and pinouts coincide and the Proteus-II includes all features of Proteus-I, the Proteus-I can be replaced by Proteus-II without any change in the hardware design. If needed, the host controller firmware can be extended by including the following new Bluetooth® 5.0 functions of the Proteus-II: - Option to enable the high throughput mode with 4 times the original throughput and data packets of 964 bytes. - New commands to set up the radio to 2 Mbit data rate mode. Both, the Proteus-I and Proteus-II are available with integrated PCB-antenna or antenna pin to connect an external antenna. Depending on the Proteus-I variant, the right Proteus-II variant shall be chosen to achieve same ranges. As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory. ### 11 Proteus-II to Proteus-III The Proteus series is a family of Bluetooth[®] LE radio modules. The Proteus-I has been succeeded by the Proteus-II, that scores with additional Bluetooth[®] 5.0 related features. Both are succeeded by the Bluetooth[®] 5.1 radio module Proteus-III. Figure 14: Proteus-II to Proteus-III ### 11.1 Summary The Proteus-III has been designed in a way that the footprint and pinout matches the one of the Proteus-II. Under certain conditions the Proteus-II can be replaced by the Proteus-III without hardware modification of the base PCB. The firmware of the Proteus-III includes additional features and improvement of existing features. Therefore, the host firmware shall be updated if new or improved functions of the Proteus-III shall be used. Some default parameters have been adjusted. Further some timings may change due to the chipset and Bluetooth[®] stack update. As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory. Figure 15: Pinout ## 11.2 Hardware adaption #### 11.2.1 Foot print In comparison to the Proteus-II, the Proteus-III has one additional pin on the left edge, which increases the length to 12×8×2 mm. Six more additional pins have been added on the bottom side of the Proteus-III. If a design has been made for Proteus-II, the footprint matches the Proteus-III, if no underlying non-insulated copper area touches the new *B1-B6* and *ANT* pins of the Proteus-III. Further this match is only positive for the Proteus-I/-II with external antenna. Due to the increase size of the Proteus-III by 1 mm, the base PCB must be large enough to solder the new module. #### 11.2.2 Pinout Although the Proteus-II and Proteus-III share the same footprint, some of the pin functions differ on the new hardware platform. | Pin
No | Proteus-II | Pin
No | Proteus-III | Comment | |-----------|------------|-----------|-------------|---| | 2 | GND | 3 | GND | Ground | | 3 | SWDCLK | 4 | SWDCLK | Serial wire clock (SWD Interface). | | 4 | SWDIO | 5 | SWDIO | Serial wire input/output (SWD Interface). | | 5 | /RESET | 6 | /RESET | Reset pin. | | 6 | BOOT | 7 | BOOT | Boot pin. | | 7 | VDD | 8 | VDD | Supply voltage | | 8 | OP_MODE | 9 | MODE_1 | Operation mode pin to switch between Command Mode and Peripheral only Mode. | | 10 | LED_1 | 11 | LED_1 | Indicates the module state. | | 11 | LED_2 | 12 | LED_2 | Indicates the module state. | | 12 | UTXD | 13 | UTXD | UART Transmission. | | 13 | URXD | 14 | URXD | UART Reception. | | 14 | /RTS | 15 | /RTS | UART /RTS signal. | | 15 | /CTS |
16 | /CTS | UART /CTS signal. | | 16 | WAKE_UP | 17 | WAKE_UP | Wake-up will allow leaving the system-off mode or re-enabling the UART. | | 17 | GND | 18 | GND | Ground | Table 19: Pins with same functions on both, Proteus-II and Proteus-III | Pin
No | Proteus-II | Pin
No | Proteus-III | Comment | |-----------|------------|-----------|-------------|--| | - | - | 1 | ANT | Connection to the internal PCB antenna. | | 1 | ANT | 2 | RF | Pin providing the radio signal. | | 9 | RESERVED | 10 | BUSY | Indicates on the Proteus-III if module is busy with data transmission when using Peripheral only Mode. | | - | - | B1 | RESERVED | Pin for remote GPIO access. | | - | - | B2 | RESERVED | Pin for remote GPIO access. | | - | - | В3 | RESERVED | Pin for remote GPIO access. | | - | - | B4 | RESERVED | Pin for remote GPIO access. | | - | - | B5 | RESERVED | Pin for remote GPIO access. | | - | - | B6 | RESERVED | Pin for remote GPIO access. | Table 20: Pins of the Proteus-II and Proteus-III, that have different functions Besides the differences in the antenna configuration that is addressed in the following chapter, the only function change is the presence of the *BUSY* pin on the Proteus-III. This pin indicates, #### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** when the module is ready for radio transmission. If the pin level is high, the radio module is busy. In Proteus-II the pin number of the *BUSY* pin has been marked as "reserved, do not connect". Thus, it's possible to replace a Proteus-II by Proteus-III without forcing an increased current consumption at this pin. #### 11.2.3 Antenna The Proteus-II has been available in two variants. Variant one is providing the radio signal on the *ANT* pin to connect an external antenna. Variant two uses the internal PCB antenna, where the *ANT* pin has no function. In contrast, the Proteus-III combines both variants. The *RF* pin provides the radio signal, where the *ANT* pin can be used to access the internal PCB antenna. This means, that either an external antenna can be connected to the *RF* pin, or a shortcut between the *RF* and *ANT* pin must be created on the base PCB to use the internal PCB antenna. For using the Proteus-III integrated PCB antenna, please refer to the reference design in the Proteus-III user manual. ### 11.3 Host firmware adaption In comparison to the firmware of the Proteus-II, the Proteus-III contains new Bluetooth® features as well as improved features, that already existed on Proteus-II. New features are: - Commands to switch Proteus-III GPIOs via remote access. - Option to enable connection setup and data transmission in long range mode (LE Coded). - Option to receive beacons (iBeacon, Eddystone beacon) from other devices than Proteus radio modules. - Option to choose between different contents of the advertising packet. - Additional security modes for pairing: LescPasskey mode (enter a secure generated pass key) and LescNumComp mode (compare two secure generated pass keys). The following features changed: - Extended user setting RF_ConnectionTiming to allow finer selection of the timing behavior. - Extended user setting RF_ScanTiming to allow finer selection of the timing behavior. - Replaced the user settings UART_Flags and UART_BaudrateIndex by UART_ConfigIndex. In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [2, 4] for radio module drivers and examples in C-code. ### 12 Proteus-II to Proteus-e The Proteus series is a family of Bluetooth[®] LE radio modules. Proteus-I has been the first Bluetooth[®] LE radio module of Würth Elektronik eiSos that has been followed by Proteus-II and Proteus-III, which introduced new Bluetooth[®] LE features. Proteus-e is the first Bluetooth® LE radio module of the so called "eco-line" characterized by reduced size, features and cost. Figure 16: Proteus-II to Proteus-e ## 12.1 Summary In comparison to the Proteus-II, the Proteus-e provides a reduced size and a smaller footprint without edge castellation. In case the Proteus-II is replaced by a Proteus-e, a new hardware design must be done, but due to the reduced size, it fits into the previously used space on the PCB. A few basic functions, like FOTA or central functions, have been removed in the Proteus-e firmware. In case these are not needed by the application, the Proteus-e can be controlled by the same UART commands. Only a few adaptions must be done to the host controller firmware to support the updated feature set. As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory. a) Proteus-II Figure 17: Pinout ## 12.2 Hardware adaption #### 12.2.1 Foot print In comparison to the Proteus-II, the Proteus-e has a similar but different footprint. Due to the reduced size of the Proteus-e $(9\times7\times2 \text{ mm})$, the Proteus-e matches the space reserved for a Proteus-II $(11\times8\times2 \text{ mm})$ design-in. #### 12.2.2 Pinout Although the Proteus-II and Proteus-e have a different footprint, most of the pin functions are the same on the new hardware platform. | Pin
No | Proteus-II | Pin
No | Proteus-e | Comment | |-----------|------------|-----------|-----------|--| | 3 | SWDCLK | 4 | SWDCLK | Serial wire clock (SWD Interface). | | 4 | SWDIO | 3 | SWDIO | Serial wire input/output (SWD Interface). | | 5 | /RESET | 5 | /RESET | Reset pin. | | 7 | VDD | 7 | VDD | Supply voltage. | | 8 | OP_MODE | 6 | MODE_1 | Operation mode pin to switch between Command Mode and Peripheral only Mode (Transparent mode). | | 10 | LED_1 | 11 | LED_1 | Indicates the module state. | | 12 | UTXD | 13 | UTXD | UART Transmission. | | 13 | URXD | 14 | URXD | UART Reception. | | 14 | /RTS | 9 | /RTS | UART /RTS signal. | | 15 | /CTS | 10 | /CTS | UART /CTS signal. | | 17 | GND | B1-
B4 | GND | Ground. | Table 21: Pins with same functions on both, Proteus-II and Proteus-e | Pin
No | Proteus-II | Pin
No | Proteus-e | Comment | |-----------|------------|-----------|----------------------|--| | - | - | 1 | ANT | Connection to the internal PCB antenna. | | 1 | ANT | 2 | RF | Pin providing the radio signal. | | 16 | WAKE-UP | 10 | BUSY/
UART_ENABLE | This pin is shared on the Proteus-e serving several functions. | | - | - | 15 | GPIO_1 | Pin for remote GPIO access. | | - | - | 8 | GPIO_2 | Pin for remote GPIO access. | | 6 | ВООТ | - | - | FOTA has been removed. | | 11 | LED_2 | | - | LED_2 has been removed. | Table 22: Pins of the Proteus-II and Proteus-e, that have different functions Besides the differences in the antenna configuration that is addressed in the following chapter, there are two major changes in the usage of the module pins: - 1. The state indication of the module is done only by one LED on Proteus-e. - 2. The new pin BUSY/UART_ENABLE is a shared pin. In Transparent Mode it indicates when the module is busy with data transmission. In Command Mode it can be used to wake-up the module and enable the UART. #### 12.2.3 Antenna The Proteus-II has been available in two variants. Variant one is providing the radio signal on the *ANT* pin to connect an external antenna. Variant two uses the internal PCB antenna, where the *ANT* pin has no function. In contrast, the Proteus-e combines both variants. The *RF* pin provides the radio signal, where the *ANT* pin can be used to access the internal PCB antenna. This means, that either an external antenna can be connected to the *RF* pin, or a short cut between the *RF* and *ANT* pin must be created on the base PCB to use the internal PCB antenna. For using the Proteus-e integrated PCB antenna, please refer to the reference design in the Proteus-e user manual. It's mandatory to respect the trace designs suggested in the user manual to keep the FCC and IC compliance. ### 12.3 Host firmware adaption In comparison to the firmware of the Proteus-II, the Proteus-e has an updated function set. Most functions on Proteus-e and Proteus-II are the same and can be controlled by the same set of UART commands. The differences are as follows: #### Removed features are: - Firmware update over the air (FOTA) is not supported on Proteus-e. - Central functions (like scanning, connection setup initiation) are not supported on Proteus- - The so called "High throughput mode" is not supported on Proteus-e. - Bluetooth[®] LE feature data length extension (DLE) that allows a higher throughput on Proteus-II. In case one of these features is needed by the application, a replacement of Proteus-II by Proteus-e cannot be done. #### Changed features are: - Number of bonded devices reduced to 8 on Proteus-e (Proteus-II supports 32). - User setting RF_SecFlagsPerOnly has been removed. Both, the Command and Transparent Mode, use the user setting RF_SecFlags now. Thus, in factory state the Proteus-e provides an open Bluetooth[®] LE connection in Transparent Mode (Proteus-III uses static pass key encryption in Transparent Mode in factory state). - State indication is done only on *LED_1* on Proteus-e (Proteus-II uses *LED_1* and *LED_2*). - Beacon functions replaced by more advanced functions on Proteus-e. - User setting RF_ScanTiming replaced by RF_AdvertisingInterval on Proteus-e. #### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** - User setting RF_ConnectionTiming replaced by RF_ConnectionInterval on Proteus-e. - Replaced the user settings UART_Flags and UART_BaudrateIndex by UART_ConfigIndex on Proteus-e. - Content of advertising and scan response packet changed on Proteus-e. Central device must run active scan to detect UUID of the Proteus-e. Device name of up to 26 bytes can be placed in the advertising packet on
Proteus-e. In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [2, 4] for radio module drivers and examples in C-code. ### 13 Proteus-III to Proteus-e The Proteus series is a family of Bluetooth[®] LE radio modules. Proteus-I has been the first Bluetooth[®] LE radio module of Würth Elektronik eiSos that has been followed by Proteus-II and Proteus-III, which introduced new Bluetooth[®] LE features. Proteus-e is the first Bluetooth® LE radio module of the so called "eco-line" characterized by reduced size, features and cost. Figure 18: Proteus-III to Proteus-e ### 13.1 Summary In comparison to the Proteus-III, the Proteus-e provides a reduced size and a smaller footprint without edge castellation. In case the Proteus-III is replaced by a Proteus-e, a new hardware design must be done, but due to the reduced size, it fits into the previously used space on the PCB. Various basic functions, like FOTA or central functions, have been removed in the Proteus-e firmware. In case these are not needed by the application, the Proteus-e can be controlled by the same UART commands. Only a few adaptions must be done to the host controller firmware to support the updated feature set. As the Bluetooth® module is replaced, a new Bluetooth® listing is mandatory. Figure 19: Pinout ## 13.2 Hardware adaption #### 13.2.1 Foot print In comparison to the Proteus-III, the Proteus-e has a similar but different footprint. Due to the reduced size of the Proteus-e $(9\times7\times2$ mm), the Proteus-e matches the space reserved for a Proteus-III $(12\times8\times2$ mm) design-in. #### 13.2.2 Pinout Although the Proteus-III and Proteus-e have a different footprint, most of the pin functions are the same on the new hardware platform. | Pin
No | Proteus-III | Pin
No | Proteus-e | Comment | |-----------|-------------|-----------|-----------|--| | 1 | ANT | 1 | ANT | Connection to the internal PCB antenna. | | 2 | RF | 2 | RF | Pin providing the radio signal. | | 4 | SWDCLK | 4 | SWDCLK | Serial wire clock (SWD Interface). | | 5 | SWDIO | 3 | SWDIO | Serial wire input/output (SWD Interface). | | 6 | /RESET | 5 | /RESET | Reset pin. | | 8 | VDD | 7 | VDD | Supply voltage. | | 9 | MODE_1 | 6 | MODE_1 | Operation mode pin to switch between Command Mode and Peripheral only Mode (Transparent mode). | | 11 | LED_1 | 11 | LED_1 | Indicates the module state. | | 13 | UTXD | 13 | UTXD | UART Transmission. | | 14 | URXD | 14 | URXD | UART Reception. | | 15 | /RTS | 9 | /RTS | UART /RTS signal. | | 16 | /CTS | 10 | /CTS | UART /CTS signal. | | 18 | GND | B1-
B4 | GND | Ground. | Table 23: Pins with same functions on both, Proteus-III and Proteus-e | Pin
No | Proteus-III | Pin
No | Proteus-e | Comment | |-----------|-------------|-----------|----------------------|--| | 10 | BUSY | 10 | BUSY/
UART_ENABLE | This pin is shared on the Proteus-e serving several functions. | | 17 | WAKE-UP | 10 | BUSY/
UART_ENABLE | This pin is shared on the Proteus-e serving several functions. | | B1 | B1 | 15 | GPIO_1 | Pin for remote GPIO access. | | B2 | B2 | 8 | GPIO_2 | Pin for remote GPIO access. | | B3-
B4 | B3-B4 | - | - | Remote GPIO function removed. | | B5-
B6 | B5-B6 | - | - | Pins removed. | | 7 | ВООТ | - | - | FOTA has been removed. | | 12 | LED_2 | - | - | LED_2 has been removed. | Table 24: Pins of the Proteus-III and Proteus-e, that have different functions There are three major changes in the usage of the module pins: - 1. The state indication of the module is done only by one LED on Proteus-e. - 2. The new pin BUSY/UART_ENABLE is a shared pin. In Transparent Mode it indicates ### **ANR016 - Radio Module Migration Guide** when the module is busy with data transmission. In Command Mode it can be used to wake-up the module and enable the UART. It replaces the pin *BUSY* and *WAKE-UP* on Proteus-III. 3. The remote GPIO function is no longer available on the B-pins, but on the *GPIO_1* and *GPIO_2* pins. ### 13.3 Host firmware adaption In comparison to the firmware of the Proteus-III, the Proteus-e has an updated function set. Most functions on Proteus-e and Proteus-III are the same and can be controlled by the same set of UART commands. The differences are as follows: #### Removed features are: - The LE coded phy (long range mode) is not supported on the Proteus-e. - Firmware update over the air (FOTA) is not supported on Proteus-e. - Central functions (like scanning, connection setup initiation) are not supported on Proteuse. - LESC (Low energy secure connections) are not supported on the Proteus-e. - Remote GPIO pins cannot be used as PWM pins on Proteus-e. - The so called "High throughput mode" is not supported on Proteus-e. - Bluetooth® LE feature data length extension (DLE) that allows a higher throughput on Proteus-III. In case one of these features is needed by the application, a replacement of Proteus-III by Proteus-e cannot be done. #### Changed features are: - Number of bonded devices reduced to 8 on Proteus-e (Proteus-III supports 32). - User setting RF_SecFlagsPerOnly has been removed. Both, the Command and Transparent Mode, use the user setting RF_SecFlags now. Thus, in factory state the Proteus-e provides an open Bluetooth[®] LE connection in Transparent Mode (Proteus-III uses static pass key encryption in Transparent Mode in factory state). - The number of pins, that can be used as remote GPIOs, is reduced to 2 (Proteus-III supports 6). - State indication is done only on *LED_1* on Proteus-e (Proteus-III uses *LED_1* and *LED_2*). - Beacon functions replaced by more advanced functions to allow highest flexibility in the Beacon's contents on Proteus-e. - User setting RF_ScanTiming replaced by RF_AdvertisingInterval on Proteus-e. #### **WIRELESS CONNECTIVITY & SENSORS** #### **ANR016 - Radio Module Migration Guide** - User setting RF_ConnectionTiming replaced by RF_ConnectionInterval on Proteus-e. - Content of advertising and scan response packet changed on Proteus-e. Central device must run active scan to detect UUID of the Proteus-e. Device name of up to 26 bytes can be placed in the advertising packet on Proteus-e. - User setting RF_AdvertisingFlags replaced by RF_AdvertisingData and RF_ScanResponseData. In case one of the above features is used in host controller firmware, it must be updated. Please refer to the Wireless Connectivity SDK [2, 4] for radio module drivers and examples in C-code. ### 14 AMB2520 to Thalassa The AMB2520 is a 2.4 GHz proprietary radio module. It has been replaced by the Thalassa, that is still conform with the current radio regulations. Figure 20: AMB2520 to Thalassa ## 14.1 Summary In comparison to the AMB2520, the Thalassa contains one additional pin i1. If this pin does not touch any underlying non-insulated copper area, the AMB2520 can be exchanged by the Thalassa without any modification. ## 14.2 Hardware adaption #### 14.2.1 Foot print Both, the AMB2520 and Thalassa have the same dimensions of 16×27.5×3.2 mm with the pins located at the same positions. The only change in the footprint is the presence of one additional pin (i1) of the JTAG interface on the Thalassa. If a design has been made for AMB2520, the footprint matches the Thalassa, if no underlying non-insulated copper area touches the JTAG pin i1 of the Thalassa. Figure 21: Universal footprint #### 14.2.2 Pinout The pinout of both, the AMB2520 and Thalassa is the same. #### 14.2.3 Antenna The Thalassa is available in two hardware variants. The first variant provides the radio signal at the ANT pin, the same as the AMB2520. Using this variant an external antenna matched to 50 Ω can be connected at this pin. The second variant of the Thalassa offers an internal PCB antenna. Using this variant the *ANT* pin has no function and can be left open. No external antenna has to be connected. ## 14.3 Host firmware adaption The firmware of both, the AMB2520 and Thalassa is the same. Thus there is no need to update the host controller's firmware. ### 15 References - [1] Würth Elektronik. Application note 15 From 868 to 915 MHz. http://www.we-online.com/ANR015. - [2] Würth Elektronik. Application note 8 Wireless connectivity SDK. http://www.we-online.com/ANR008. - [3] Würth Elektronik. Wireless Connectivity SDK for Raspberry Pi Radio module drivers in C-code. https://github.com/WurthElektronik/WirelessConnectivity-SDK. - [4] Würth Elektronik. Wireless Connectivity SDK for STM32 Radio module drivers in C-code. https://github.com/WurthElektronik/WirelessConnectivity-SDK_STM32. ## 16 Important notes The Application Note and its containing information ("Information") is based on Würth Elektronik eiSos GmbH & Co. KG and its subsidiaries and affiliates ("WE eiSos") knowledge and experience of typical requirements concerning these areas. It serves as general guidance and shall not be construed as a commitment for the suitability for customer applications by WE eiSos. While WE eiSos has used reasonable efforts to ensure the accuracy of the Information, WE eiSos does not guarantee that the Information is error-free, nor makes any other representation, warranty or guarantee that the Information is completely accurate or up-to-date. The Information is subject to change without notice. To the extent permitted by law, the Information shall not be reproduced or copied without WE eiSos' prior written permission. In any case, the Information, in full or in parts, may not be altered, falsified or distorted nor be used for any unauthorized purpose. WE eiSos is not liable for application assistance of any kind. Customer may use WE eiSos' assistance and product recommendations for customer's applications and design. No oral or written Information given by WE eiSos or its distributors, agents or employees will operate
to create any warranty or guarantee or vary any official documentation of the product e.g. data sheets and user manuals towards customer and customer shall not rely on any provided Information. THE INFORMATION IS PROVIDED "AS IS". CUSTOMER ACKNOWLEDGES THAT WE EISOS MAKES NO REPRESENTATIONS AND WARRANTIES OF ANY KIND RELATED TO, BUT NOT LIMITED TO THE NON-INFRINGEMENT OF THIRD PARTIES' INTELLEC-TUAL PROPERTY RIGHTS OR THE MERCHANTABILITY OR FITNESS FOR A PURPOSE OR USAGE. WE EISOS DOES NOT WARRANT OR REPRESENT THAT ANY LICENSE, EI-THER EXPRESS OR IMPLIED, IS GRANTED UNDER ANY PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH WE EISOS INFORMATION IS USED. INFORMATION PUBLISHED BY WE EISOS REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE A LICENSE FROM WE eiSos TO USE SUCH PROD-UCTS OR SERVICES OR A WARRANTY OR ENDORSEMENT THEREOF. The responsibility for the applicability and use of WE eiSos' components in a particular customer design is always solely within the authority of the customer. Due to this fact it is up to the customer to evaluate and investigate, where appropriate, and decide whether the device with the specific characteristics described in the specification is valid and suitable for the respective customer application or not. The technical specifications are stated in the current data sheet and user manual of the component. Therefore the customers shall use the data sheets and user manuals and are cautioned to verify that they are current. The data sheets and user manuals can be downloaded at www.we-online.com. Customers shall strictly observe any product-specific notes, cautions and warnings. WE eiSos reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time without notice. WE eiSos will in no case be liable for customer's use, or the results of the use, of the components or any accompanying written materials. IT IS CUSTOMER'S RESPONSIBILITY TO VERIFY THE RESULTS OF THE USE OF THIS INFORMATION IN IT'S OWN PARTICULAR ENGINEERING AND PRODUCT ENVIRONMENT AND CUSTOMER ASSUMES THE ENTIRE RISK OF DOING SO OR FAILING TO DO SO. IN NO CASE WILL WE EISOS BE LIABLE FOR #### **WIRELESS CONNECTIVITY & SENSORS** ### **ANR016 - Radio Module Migration Guide** CUSTOMER'S USE, OR THE RESULTS OF IT'S USE OF THE COMPONENTS OR ANY ACCOMPANYING WRITTEN MATERIAL IF CUSTOMER TRANSLATES, ALTERS, ARRANGES, TRANSFORMS, OR OTHERWISE MODIFIES THE INFORMATION IN ANY WAY, SHAPE OR FORM. If customer determines that the components are valid and suitable for a particular design and wants to order the corresponding components, customer acknowledges to minimize the risk of loss and harm to individuals and bears the risk for failure leading to personal injury or death due to customers usage of the components. The components have been designed and developed for usage in general electronic equipment only. The components are not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the components is reasonably expected to cause severe personal injury or death, unless WE eiSos and customer have executed an agreement specifically governing such use. Moreover WE eiSos components are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation, transportation signal, disaster prevention, medical, public information network etc. WE eiSos must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every component which is used in electrical circuits that require high safety and reliability functions or performance. COSTUMER SHALL INDEMNIFY WE EISOS AGAINST ANY DAMAGES ARISING OUT OF THE USE OF THE COMPONENTS IN SUCH SAFETY-CRITICAL APPLICATIONS. ## **ANR016 - Radio Module Migration Guide** # **List of Figures** | 1 | Thadeus to Tarvos-III | 8 | |---------|--|----------| | 2 | Universal footprint | 9 | | 3 | Tarvos to Tarvos-III | 13 | | 4 | Pinout | 14 | | | a Tarvos | 14 | | | b Tarvos-III | 14 | | 5 | Tarvos-I to Tarvos-III | 18 | | 6 | Universal footprint | 19 | | 7 | Tarvos-II to Tarvos-III | 24 | | 8 | Universal footprint | 25 | | 9 | Tarvos-III to Thebe-II | 30 | | 10 | Thebe-I to Thebe-II | 33 | | 11 | Telesto-III to Themisto-I | 36 | | 12 | Metis-I to Metis-II | 39 | | 13 | Proteus-I to Proteus-II | 40 | | 14 | Proteus-II to Proteus-III | 41 | | 15 | Pinout | 42 | | | a Proteus-II | 42 | | | b Proteus-III | 42 | | 16 | Proteus-II to Proteus-e | 45 | | 17 | Pinout | 46 | | | a Proteus-II | 46 | | | b Proteus-e | 46 | | 18 | Proteus-III to Proteus-e | 50 | | 19 | Pinout | 51 | | | a Proteus-III | 51 | | | b Proteus-e | 51 | | 20 | AMB2520 to Thalassa | 55 | | 21 | Universal footprint | 56 | | | | | | | · | | | List (| of Tables | | | _ | Plane the second conflored by the Headers and Tourism III | 4.0 | | 1 | , | 10 | | 2 | | 11 | | 3 | Radio profiles of the Tarvos | 16
16 | | 4
5 | Radio profiles of the Tarvos-III | 20 | | 6 | Pins with same functions on both, Tarvos-I and Tarvos-III | 21 | | 7 | | 22 | | 8 | Radio profiles of the Tarvos-I | 22 | | 9 | Radio profiles of the Tarvos-III | 26 | | 9
10 | Pins of the Tarvos-II and Tarvos-III that have different functions | 20
27 | | 11 | | 28 | | 12 | · · | 28 | | 13 | | 28
31 | | 13 | Radio profiles of the Tarvos-III | JΙ | ## **WIRELESS CONNECTIVITY & SENSORS** ## **ANR016 - Radio Module Migration Guide** | 14 | Radio profiles of the Thebe-II | 32 | |----|---|----| | 15 | Radio profiles of the Thebe-I | 34 | | 16 | Radio profiles of the Thebe-II | 35 | | 17 | Radio profiles of the Telesto-III | 37 | | 18 | Radio profiles of the Themisto-I | 38 | | 19 | Pins with same functions on both, Proteus-II and Proteus-III | 43 | | 20 | Pins of the Proteus-II and Proteus-III, that have different functions | 43 | | 21 | Pins with same functions on both, Proteus-II and Proteus-e | 47 | | 22 | Pins of the Proteus-II and Proteus-e, that have different functions | 47 | | 23 | Pins with same functions on both, Proteus-III and Proteus-e | 52 | | 24 | Pins of the Proteus-III and Proteus-e, that have different functions | 52 | #### Contact Würth Elektronik eiSos GmbH & Co. KG Division Wireless Connectivity & Sensors Max-Eyth-Straße 1 74638 Waldenburg Germany Tel.: +49 651 99355-0 Fax.: +49 651 99355-69 www.we-online.com/wireless-connectivity